Abstract

This article describes an experimental study and mathematical modeling of a molten carbonate fuel cell (MCFC) powered by methane thanks to the use of a recycled catalyst in the anode channel of the cell. The catalyst was created from production residues from the electrodes of the molten carbonate fuel cell. The reforming process will also take place at the anode of the cell itself, but thanks to the use of an additional catalyst, we will obtain a larger surface on which the reforming process will take place. Two mathematical models working together were created: the fuel cell model (reduced-order model) and the reforming process model (kinetic model). Four values of the steam-to-carbon ratio (2.0, 2.5, 3.0, and 3.5) were considered. The performance of the fuel cell was also tested for different methane flows to determine the flow at which benefits are achieved in relation to the cell without additional catalyst. The current–voltage curve for the MCFC fuel cell powered by methane and steam (S/C = 2) at the temperature of 700 °C and with the use of the catalyst runs well above the curve for the cell without a catalyst. This indicates a noticeable positive effect of the recycled catalyst on the performance of the fuel cell powered by methane and steam. Despite partially successful experimental studies, it should be emphasized that the temperature of 700 °C is insufficient for pure nickel to act effectively as a catalyst for the methane steam reforming process.

References

1.
Burra
,
K. R. G.
,
Sahin
,
M.
, and
Gupta
,
A. K.
,
2024
, “
Resistive Heating Catalytic Micro-Reactor for Process Intensified Fuel Reforming to Hydrogen
,”
ASME J. Energy Resour. Technol.
,
146
(
9
), p.
092102
.
2.
Matamba
,
T.
,
Iglauer
,
S.
, and
Keshavarz
,
A.
,
2022
, “
A Progress Insight of the Formation of Hydrogen Rich Syngas From Coal Gasification
,”
J. Energy Inst.
,
105
, pp.
81
102
.
3.
Vargas
,
G. G.
,
Ortiz
,
P. S.
, and
de Oliveira
,
S.
,
2024
, “
Performance Analysis of Waste Biomass Gasification and Renewable Hydrogen Production by Neural Network Algorithm
,”
ASME J. Energy Resour. Technol.
,
146
(
5
), p.
052701
.
4.
Sharma
,
V.
,
Upreti
,
K.
,
Natarajan
,
A. K.
,
Jain
,
N.
,
Kumar
,
S.
,
Bara
,
A. R.
, and
Kumari
,
S.
,
2024
, “
Downdraft Gasification for Biogas Production: The Role of Artificial Intelligence
,”
ASME J. Energy Resour. Technol.
,
146
(
12
), p.
120801
.
5.
Lee
,
D.
,
Kim
,
Y. S.
,
Bae
,
Y.
,
Park
,
J. Y.
, and
Ahn
,
K. Y.
,
2024
, “
Dynamic Behavior of an SOEC System With a Schedule-Based Start-Up and Operating Process
,”
ASME J. Energy Resour. Technol.
,
146
(
7
), p.
072102
.
6.
Bora
,
J.
,
Ghosh
,
S.
, and
Mitra
,
A.
,
2023
, “Chapter 12—Photobiological Hydrogen Production by Microorganisms,”
Solar-Driven Green Hydrogen Generation and Storage
,
Elsevier
, pp.
237
257
.
7.
Li
,
X.
,
Sun
,
X.
,
Song
,
Q.
,
Yang
,
Z.
,
Wang
,
H.
, and
Duan
,
Y.
,
2022
, “
A Critical Review on Integrated System Design of Solar Thermochemical Water-Splitting Cycle for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
47
(
79
), pp.
33619
33642
.
8.
Nemitallah
,
M. A.
,
Aliyu
,
M.
,
Hamdy
,
M.
, and
Habib
,
M. A.
,
2024
, “
Retrofitting Natural Gas–Fired Boiler for Hydrogen Combustion: Operational Performance and NOx Emissions
,”
ASME J. Energy Resour. Technol.
,
146
(
10
), p.
101701
.
9.
Wang
,
Q.
,
He
,
Y.
,
Qin
,
Z.
,
Liu
,
Z.
, and
Fu
,
Y
.,
2024
, “
Numerical Simulation on Combustion Characteristics of Methane–Air Premixed Flame Impacted by Hydrogen Jet
,”
ASME J. Energy Resour. Technol.
,
146
(
11
), p.
112301
. .
10.
Yadav
,
A. K.
,
Kumar
,
A.
, and
Sinha
,
S.
,
2024
, “
Techno-Economic and Environmental Analysis of a Hybrid Power System Formed From Solid Oxide Fuel Cell, Gas Turbine, and Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
146
(
7
), p.
072101
.
11.
Milewski
,
J.
,
Cwieka
,
K.
,
Szczęśniak
,
A.
,
Szabłowski
,
Ł
,
Wejrzanowski
,
T.
,
Skibinski
,
J.
,
Dybiński
,
O.
,
Lysik
,
A.
,
Sienko
,
A.
, and
Stanger
,
P.
,
2023
, “
Recycling Electronic Scrap to Make Molten Carbonate Fuel Cell Cathodes
,”
Int. J. Hydrogen Energy
,
48
(
31
), pp.
11831
11843
.
12.
Zhou
,
L.
,
Martirez
,
J. M. P.
,
Finzel
,
J.
,
Zhang
,
C.
,
Swearer
,
D. F.
,
Tian
,
S.
,
Robatjazi
,
H.
, et al
,
2020
, “
Light-Driven Methane Dry Reforming With Single Atomic Site Antenna-Reactor Plasmonic Photocatalysts
,”
Nat. Energy
,
5
(
1
), pp.
61
70
.
13.
Tang
,
Y.
,
Wei
,
Y.
,
Wang
,
Z.
,
Zhang
,
S.
,
Li
,
Y.
,
Nguyen
,
L.
,
Li
,
Y.
, et al
,
2019
, “
Synergy of Single-Atom Ni1 and Ru1 Sites on CeO2 for Dry Reforming of CH4
,”
J. Am. Chem. Soc.
,
141
(
18
), pp.
7283
7293
.
14.
Jones
,
G.
,
Jakobsen
,
J. G.
,
Shim
,
S. S.
,
Kleis
,
J.
,
Andersson
,
M. P.
,
Rossmeisl
,
J.
,
Abild-Pedersen
,
F.
, et al
,
2008
, “
First Principles Calculations and Experimental Insight Into Methane Steam Reforming Over Transition Metal Catalysts
,”
J. Catal.
,
259
(
1
), pp.
147
160
.
15.
Wei
,
J.
, and
Iglesia
,
E.
,
2004
, “
Isotopic and Kinetic Assessment of the Mechanism of Reactions of CH4 With CO2 or H2O to Form Synthesis Gas and Carbon on Nickel Catalysts
,”
J. Catal.
,
224
(
2
), pp.
370
383
.
16.
Ali
,
S.
,
Al-Marri
,
M. J.
,
Abdelmoneim
,
A. G.
,
Kumar
,
A.
, and
Khader
,
M. M.
,
2016
, “
Catalytic Evaluation of Nickel Nanoparticles in Methane Steam Reforming
,”
Int. J. Hydrogen Energy
,
41
(
48
), pp.
22876
22885
.
17.
Katheria
,
S.
,
Gupta
,
A.
,
Deo
,
G.
, and
Kunzru
,
D.
,
2016
, “
Effect of Calcination Temperature on Stability and Activity of Ni/MgAl2O4 Catalyst for Steam Reforming of Methane at High Pressure Condition
,”
Int. J. Hydrogen Energy
,
41
(
32
), pp.
14123
14132
.
18.
Rogers
,
J. L.
,
Mangarella
,
M. C.
,
D’Amico
,
A. D.
,
Gallagher
,
J. R.
,
Dutzer
,
M. R.
,
Stavitski
,
E.
,
Miller
,
J. T.
, and
Sievers
,
C.
,
2016
, “
Differences in the Nature of Active Sites for Methane Dry Reforming and Methane Steam Reforming Over Nickel Aluminate Catalysts
,”
ACS Catal.
,
6
(
9
), pp.
5873
5886
.
19.
Khani
,
Y.
,
Shariatinia
,
Z.
, and
Bahadoran
,
F.
,
2016
, “
High Catalytic Activity and Stability of ZnLaAlO4 Supported Ni, Pt and Ru Nanocatalysts Applied in the Dry, Steam and Combined Dry-Steam Reforming of Methane
,”
Chem. Eng. J.
,
299
, pp.
353
366
.
20.
Thalinger
,
R.
,
Gocyla
,
M.
,
Heggen
,
M.
,
Dunin-Borkowski
,
R.
,
Grünbacher
,
M.
,
Stöger-Pollach
,
M.
,
Schmidmair
,
D.
,
Klötzer
,
B.
, and
Penner
,
S.
,
2016
, “
NI-Perovskite Interaction and Its Structural and Catalytic Consequences in Methane Steam Reforming and Methanation Reactions
,”
J. Catal.
,
337
, pp.
26
35
.
21.
Iglesias
,
I.
,
Baronetti
,
G.
, and
Mariño
,
F.
,
2017
, “
Ni/Ce0.95M0.05O2−d (M = Zr, Pr, La) for Methane Steam Reforming at Mild Conditions
,”
Int. J. Hydrogen Energy
,
42
(
50
), pp.
29735
29744
.
22.
Aghayan
,
M.
,
Potemkin
,
D. I.
,
Rubio-Marcos
,
F.
,
Uskov
,
S. I.
,
Snytnikov
,
P. V.
, and
Hussainova
,
I.
,
2017
, “
Template-Assisted Wet-Combustion Synthesis of Fibrous Nickel-Based Catalyst for Carbon Dioxide Methanation and Methane Steam Reforming
,”
ACS Appl. Mater. Interfaces
,
9
(
50
), pp.
43553
43562
.
23.
Park
,
Y. S.
,
Kang
,
M.
,
Byeon
,
P.
,
Chung
,
S. Y.
,
Nakayama
,
T.
,
Ko
,
T.
, and
Hwang
,
H.
,
2018
, “
Fabrication of a Regenerable Ni Supported NiO-MgO Catalyst for Methane Steam Reforming by Exsolution
,”
J. Power Sources
,
397
, pp.
318
324
.
24.
Zhang
,
R.
,
Huang
,
C.
,
Zong
,
L.
,
Lu
,
K.
,
Wang
,
X.
, and
Cai
,
J.
,
2018
, “
Hydrogen Production From Methanol Steam Reforming Over TiO2 and CeO2 Pillared Clay Supported Au Catalysts
,”
Appl. Sci. (Switzerland)
,
8
(
2
), p.
176
.
25.
Shanmugam
,
V.
,
Neuberg
,
S.
,
Zapf
,
R.
,
Pennemann
,
H.
, and
Kolb
,
G.
,
2020
, “
Hydrogen Production Over Highly Active Pt Based Catalyst Coatings by Steam Reforming of Methanol: Effect of Support and Co-Support
,”
Int. J. Hydrogen Energy
,
45
(
3
), pp.
1658
1670
.
26.
Men
,
Y.
,
Kolb
,
G.
,
Zapf
,
R.
,
O’Connell
,
M.
, and
Ziogas
,
A.
,
2010
, “
Methanol Steam Reforming Over Bimetallic Pd-In/Al2O3 Catalysts in a Microstructured Reactor
,”
Appl. Catal., A
,
380
(
1–2
), pp.
15
20
.
27.
Ding
,
Y.
,
Cai
,
Y.
,
Li
,
P.
,
Gu
,
S.
,
Song
,
S.
,
Guan
,
J.
,
Shen
,
Y.
,
Han
,
Y.
, and
He
,
W.
,
2022
, “
Recyclable Regeneration of NiO/NaF Catalyst: Hydrogen Evolution Via Steam Reforming of Oxygen-Containing Volatile Organic Compounds
,”
Energy Convers. Manage.
,
258
, p.
115456
.
28.
Bove
,
R.
, and
Lunghi
,
P.
,
2005
, “
Experimental Comparison of MCFC Performance Using Three Different Biogas Types and Methane
,”
J. Power Sources
,
145
(
2
), pp.
588
593
.
29.
Szablowski
,
L.
,
Dybinski
,
O.
,
Szczesniak
,
A.
, and
Milewski
,
J.
,
2022
, “
Mathematical Model of Steam Reforming in the Anode Channel of a Molten Carbonate Fuel Cell
,”
Energies
,
15
(
2
), p.
608
.
30.
Wójcik
,
M.
,
Szabłowski
,
Ł
, and
Dybiński
,
O.
,
2024
, “
Comparison of Mathematical Models of Steam Methane Reforming Process for the Needs of Fuel Cells
,”
Int. J. Hydrogen Energy
,
52
, pp.
965
982
.
31.
Szablowski
,
L.
,
Kupecki
,
J.
,
Milewski
,
J.
, and
Motylinski
,
K.
,
2019
, “
Kinetic Model of a Plate Fin Heat Exchanger With Catalytic Coating as a Steam Reformer of Methane, Biogas, and Dimethyl Ether
,”
Int. J. Energy Res.
,
43
(
7
), pp.
2930
2939
.
32.
Young
,
D.
,
2001
,
Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems
,
John Wiley & Sons
,
New York
.
33.
Milewski
,
J.
,
Wołowicz
,
M.
,
Miller
,
A.
, and
Bernat
,
R.
,
2013
, “
A Reduced Order Model of Molten Carbonate Fuel Cell: A Proposal
,”
Int. J. Hydrogen Energy
,
38
(
26
), pp.
11565
11575
.
34.
Dybiński
,
O.
,
Milewski
,
J.
,
Szczęśniak
,
A.
,
Martsinchyk
,
A.
, and
Szabłowski
,
Ł
,
2024
, “
Experimental Investigation of Porous Anode Degradation of a Molten Carbonate Fuel Cell Fed With Direct Fermentation Product Composed of Bioethanol
,”
Int. J. Hydrogen Energy
,
52
, pp.
889
901
.
35.
Dybiński
,
O.
,
Milewski
,
J.
,
Szabłowski
,
Ł
,
Szczęśniak
,
A.
, and
Martinchyk
,
A.
,
2023
, “
Methanol, Ethanol, Propanol, Butanol and Glycerol as Hydrogen Carriers for Direct Utilization in Molten Carbonate Fuel Cells
,”
Int. J. Hydrogen Energy
,
48
(
96
), pp.
37637
37653
.
You do not currently have access to this content.