Abstract

Fluidization is widely utilized in various industrial processes due to its advantages, such as efficient material mixing, uniform temperature distribution, and enhanced heat and mass transfer between solids and the fluid. It is commonly applied in processes such as drying, heating, cooling, and freezing, and plays a key role in the energy sector, particularly in fluidized bed boiler systems. This article focuses on numerical simulations of fluidized bed hydrodynamics under low-pressure conditions, with applications in adsorption cooling and desalination systems. This study employed the specialized CeSFaMB software, designed specifically for fluidized bed systems, which has been extensively tested and validated against real-world experimental data. The experiments were performed under low-pressure conditions (1000–2600 Pa) at a temperature of 25 °C, with fluidization driven by a pressure difference. This study demonstrated that variations in particle size within the fluidized bed significantly affect its hydrodynamics. Particle size differences were found to influence solid circulation fluxes, bubble dynamics, and bed porosity, which in turn directly impacted the heat transfer coefficient. These interdependencies are crucial for optimizing the performance of adsorption cooling and desalination systems. Furthermore, this study revealed a maximum relative error of 9.3% between the experimental results and numerical simulations, indicating strong agreement and reliable performance in simulating the bubbling fluidized bed.

References

1.
Shook
,
P.
,
Choi
,
J.-K.
, and
Kissock
,
K.
,
2023
, “
Analyzing the Multiscale Impacts of Implementing Energy-Efficient HVAC Improvements Through Energy Audits and Economic Input–Output Analysis
,”
ASME J. Energy Resour. Technol.
,
145
(
4
), p.
041701
.
2.
Vanbaelinghem
,
L.
,
Costantino
,
A.
,
Grassauer
,
F.
, and
Pelletier
,
N.
,
2024
, “
Alternative Heating, Ventilation, and Air Conditioning (HVAC) System Considerations for Reducing Energy Use and Emissions in Egg Industries in Temperate and Continental Climates: A Systematic Review of Current Systems, Insights, and Future Directions
,”
Sustainability
,
16
(
12
), p.
4895
.
3.
Shmroukh
,
A. N.
,
Ali
,
A. H. H.
, and
Ookawara
,
S.
,
2015
, “
Adsorption Working Pairs for Adsorption Cooling Chillers: A Review Based on Adsorption Capacity and Environmental Impact
,”
Renewable Sustainable Energy Rev.
,
50
, pp.
445
456
.
4.
Hiramatsu
,
N.
,
Susuki
,
Y.
, and
Ishigame
,
A.
,
2020
, “
Koopman Mode Decomposition of Oscillatory Temperature Field Inside a Room
,”
Phys. Rev. E
,
102
(
2
), p.
022210
.
5.
Hara Chakravarty
,
K.
,
Sadi
,
M.
,
Chakravarty
,
H.
,
Sulaiman Alsagri
,
A.
,
James Howard
,
T.
, and
Arabkoohsar
,
A.
,
2022
, “
A Review on Integration of Renewable Energy Processes in Vapor Absorption Chiller for Sustainable Cooling
,”
Sustainable Energy Technol. Assessm.
,
50
(
1
), p.
101822
.
6.
Sadi
,
M.
,
Behzadi
,
A. m.
,
Alsagri
,
A. S.
,
Chakravarty
,
K. H.
, and
Arabkoohsar
,
A.
,
2022
, “
An Innovative Green Multi-Generation System Centering Around Concentrating PVTs and Biomass Heaters, Design and Multi-Objective Optimization
,”
J. Cleaner Prod.
,
340
, p.
130625
.
7.
Hart
,
D. R.
, and
Rosen
,
M. A.
,
1996
, “
Environmental and Health Benefits of District Cooling Using Utility-Based Cogeneration in Ontario, Canada
,”
Energy
,
21
(
12
), pp.
1135
1146
.
8.
Mugnini
,
A.
,
Coccia
,
G.
,
Polonara
,
F.
, and
Arteconi
,
A.
,
2021
, “
Energy Flexibility as Additional Energy Source in Multi-Energy Systems With District Cooling
,”
Energies
,
14
(
2
), p.
519
.
9.
Jangsten
,
M.
,
Filipsson
,
P.
,
Lindholm
,
T.
, and
Dalenbäck
,
J.-O.
,
2020
, “
High Temperature District Cooling: Challenges and Possibilities Based on an Existing District Cooling System and its Connected Buildings
,”
Energy
,
199
(
818
), p.
117407
.
10.
Ahmed
,
T.
,
Kumar
,
P.
, and
Mottet
,
L.
,
2021
, “
Natural Ventilation in Warm Climates: The Challenges of Thermal Comfort, Heatwave Resilience and Indoor Air Quality
,”
Renewable Sustainable Energy Rev.
,
138
(
3
), p.
110669
.
11.
Ali
,
B. M.
, and
Akkaş
,
M.
,
2024
, “
The Green Cooling Factor: Eco-Innovative Heating, Ventilation, and Air Conditioning Solutions in Building Design
,”
Appl. Sci.
,
14
(
1
), p.
195
.
12.
Pająk
,
L.
, and
Tomaszewska
,
B.
,
2018
, “Reinjection of Cooled Water Back into a Reservoir,”
Geothermal Water Management
,
B.
Tomaszewska
and
A.
Szczepański
, eds.,
Springer
,
Cham, Switzerland
, pp.
31
39
.
13.
Su
,
W.
,
Han
,
Y.
,
Liu
,
Z.
,
Jin
,
X.
,
Liu
,
Z.
,
Yang
,
D.
, and
Zhang
,
X.
,
2024
, “
Absorption Heat Pumps for Low-Grade Heat Utilization: A Comprehensive Review on Working Pairs, Classification, System Advances and Applications
,”
Energy Convers. Manage.
,
315
, p.
118760
.
14.
Alami
,
A. H.
,
Alrashid
,
R.
,
Mdallal
,
A.
,
Yasin
,
A.
,
Ayoub
,
M.
,
Alasad
,
S.
,
Aljaghoub
,
H.
, et al
,
2023
, “
Expansion Cooling Prospects for Large Scale Applications
,”
Int. J. Thermofluids
,
20
, p.
100437
.
15.
Rao
,
T. S.
,
2022
, “Biofouling (Macro-Fouling) in Seawater Intake Systems,”
Water-Formed Deposits: Fundamentals and Mitigation Strategies
,
S. S.
Mohapatra
, ed.,
Elsevier
,
Amsterdam, Netherlands
, pp.
565
587
.
16.
Mahmoud
,
M.
,
Ramadan
,
M.
,
Naher
,
S.
,
Pullen
,
K.
, and
Olabi
,
A. G.
,
2021
, “
The Impacts of Different Heating Systems on the Environment: A Review
,”
Sci. Total Environ.
,
766
(
25
), p.
142625
.
17.
Musie
,
W.
, and
Gonfa
,
G.
,
2023
, “
Fresh Water Resource, Scarcity, Water Salinity Challenges and Possible Remedies: A Review
,”
Heliyon
,
9
(
8
), p.
e18685
.
18.
Ingrao
,
C.
,
Strippoli
,
R.
,
Lagioia
,
G.
, and
Huisingh
,
D.
,
2023
, “
Water Scarcity in Agriculture: An Overview of Causes, Impacts and Approaches for Reducing the Risks
,”
Heliyon
,
9
(
8
), p.
e18507
.
19.
Elsaid
,
K.
,
Taha Sayed
,
E.
,
Yousef
,
B. A. A.
,
Kamal
,
H. R. M.
,
Abdelkareem
,
M.
, and
Olabi
,
A. G.
,
2020
, “
Recent Progress on the Utilization of Waste Heat for Desalination: A Review
,”
Energy Convers. Manage.
,
221
, p.
113105
.
20.
Elimelech
,
M.
, and
Phillip
,
W. A.
,
2011
, “
The Future of Seawater Desalination: Energy, Technology, and the Environment
,”
Science
,
333
(
6043
), pp.
712
717
.
21.
Mujtaba
,
G.
,
Shah
,
M. U. H.
,
Hai
,
A.
,
Daud
,
M.
, and
Hayat
,
M.
,
2024
, “
A Holistic Approach to Embracing the United Nation’s Sustainable Development Goal (SDG-6) Towards Water Security in Pakistan
,”
J. Water Process Eng.
,
57
, p.
104691
.
22.
Prins
,
F. X.
,
Etale
,
A.
,
Ablo
,
A. D.
, and
Thatcher
,
A.
,
2023
, “
Water Scarcity and Alternative Water Sources in South Africa: Can Information Provision Shift Perceptions?
,”
Urban Water J.
,
20
(
10
), pp.
1438
1449
.
23.
Lasek
,
L.
,
Zylka
,
A.
,
Krzywanski
,
J.
,
Skrobek
,
D.
,
Sztekler
,
K.
, and
Nowak
,
W.
,
2023
, “
Review of Fluidized Bed Technology Application for Adsorption Cooling and Desalination Systems
,”
Energies
,
16
(
21
), p.
7311
.
24.
Sztekler
,
K.
,
Kalawa
,
W.
,
Nowak
,
W.
,
Mika
,
Ł.
,
Krzywański
,
J.
,
Grabowska
,
K.
,
Sosnowski
,
M.
, and
Alharbi
,
A. A.
,
2021
, “
Performance Evaluation of a Single-Stage Two-Bed Adsorption Chiller With Desalination Function
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p. 082101.
25.
Krzywanski
,
J.
,
Skrobek
,
D.
,
Sosnowski
,
M.
,
Ashraf
,
W. M.
,
Grabowska
,
K.
,
Zylka
,
A.
,
Kulakowska
,
A.
,
Nowak
,
W.
,
Sztekler
,
K.
, and
Shahzad
,
M. W.
,
2024
, “
Towards Enhanced Heat and Mass Exchange in Adsorption Systems: The Role of AutoML and Fluidized bed Innovations
,”
Int. Commun. Heat Mass Transfer
,
152
, p.
107262
.
26.
Krzywanski
,
J.
,
Grabowska
,
K.
,
Sosnowski
,
M.
,
Żyłka
,
A.
,
Sztekler
,
K.
,
Kalawa
,
W.
,
Wójcik
,
T.
, and
Nowak
,
W.
,
2018
, “
Modeling of a Re-Heat Two-Stage Adsorption Chiller by AI Approach
,”
MATEC Web Conf.
,
240
, p.
05014
.
27.
Blaszczuk
,
A.
,
Zylka
,
A.
, and
Leszczynski
,
J.
,
2016
, “
Simulation of Mass Balance Behavior in a Large-Scale Circulating Fluidized Bed Reactor
,”
Particuology
,
25
, pp.
51
58
.
28.
Zylka
,
A.
,
Krzywanski
,
J.
,
Czakiert
,
T.
,
Idziak
,
K.
,
Kulicki
,
K.
,
Jankowska
,
S.
, and
Nowak
,
W.
,
2017
, “
Numerical Simulations of Fluidization Dynamics in a Hot Model of a CLC Process
,”
E3S Web Conf.
,
13
(
121
), p.
04002
.
29.
Grabowska
,
K.
,
Zylka
,
A.
,
Kulakowska
,
A.
,
Skrobek
,
D.
,
Krzywanski
,
J.
,
Sosnowski
,
M.
,
Ciesielska
,
K.
, and
Nowak
,
W.
,
2021
, “
Experimental Investigation of an Intensified Heat Transfer Adsorption Bed (IHTAB) Reactor Prototype
,”
Materials
,
14
(
13
), p.
3520
.
30.
Wang
,
J.
,
Wang
,
Y.
,
Huang
,
X.
,
Yuan
,
Y. L.
,
Chen
,
R. H.
,
Zhou
,
H.
, and
Zhou
,
D. D.
,
2014
, “
Adsorption Dynamics and Breakthrough Characteristics Based on the Fluidization Condition
,”
Huanjing Kexue/Environ. Sci.
,
35
(
2
), pp.
678
683
.
31.
Krzywanski
,
J.
,
Nowak
,
W.
,
Skrobek
,
D.
,
Zylka
,
A.
,
Ashraf
,
W. M.
,
Grabowska
,
K.
,
Sosnowski
,
M.
,
Kulakowska
,
A.
,
Czakiert
,
T.
, and
Gao
,
Y.
,
2025
, “
Modeling of Bed-to-Wall Heat Transfer Coefficient in Fluidized Adsorption Bed by Gene Expression Programming Approach
,”
Powder Technol.
,
449
, p.
120392
.
32.
Sanaye
,
S.
, and
Jafari
,
H.
,
2022
, “
Modeling and Optimizing a Two-Bed Adsorption Cooling System With a Modified Mass Recovery Process
,”
Energy Convers. Manage.
,
277
, p.
116649
.
33.
Li
,
M.
,
Zhao
,
Y.
,
Long
,
R.
,
Liu
,
Z.
, and
Liu
,
W.
,
2022
, “
Metal Foam Packed Adsorbent Bed Boosting the Performance of the Adsorption-Based Desalination and Cooling System
,”
Energy Convers. Manage.
,
254
, p.
115250
.
34.
Kalawa
,
W.
,
Sztekler
,
K.
,
Mlonka-Mędrala
,
A.
,
Radomska
,
E.
,
Nowak
,
W.
,
Mika
,
Ł.
,
Bujok
,
T.
, and
Boruta
,
P.
,
2023
, “
Simulation Analysis of Mechanical Fluidized Bed in Adsorption Chillers
,”
Energies
,
16
(
15
), p.
5817
.
35.
Krzywanski
,
J.
,
Grabowska
,
K.
,
Sosnowski
,
M.
,
Zylka
,
A.
,
Kulakowska
,
A.
,
Czakiert
,
T.
,
Sztekler
,
K.
,
Wesolowska
,
M.
, and
Nowak
,
W.
,
2021
, “
Heat Transfer in Adsorption Chillers With Fluidized Beds of Silica Gel, Zeolite, and Carbon Nanotubes
,”
Heat Transfer Eng.
,
43
(
3–5
), pp.
172
182
.
36.
Krzywanski
,
J.
,
Sosnowski
,
M.
,
Grabowska
,
K.
,
Zylka
,
A.
,
Lasek
,
L.
, and
Kijo-Kleczkowska
,
A.
,
2024
, “
Advanced Computational Methods for Modeling, Prediction and Optimization—A Review
,”
Materials
,
17
(
14
), p.
3521
.
37.
Kulakowska
,
A.
,
Zylka
,
A.
,
Krzywanski
,
J.
,
Skrobek
,
D.
,
Grabowska
,
K.
,
Sosnowski
,
M.
, and
Nowak
,
W.
,
2023
, “
Influence of the Adsorption Bed Composition on the Low-Pressure Fluidization
,”
Processes
,
11
(
7
), p.
1912
.
38.
Nemati
,
N.
,
Pallarès
,
D.
,
Mattisson
,
T.
,
Guío-Pérez
,
D. C.
, and
Rydén
,
M.
,
2024
, “
Experimental Investigation and Modeling of the Impact of Random Packings on Mass Transfer in Fluidized Beds
,”
Powder Technol.
,
440
(
5
), p.
119781
.
39.
Xie
,
W.
,
Hua
,
W.
, and
Zhang
,
X.
,
2023
, “
Research Progress on Synthesis and Adsorption Properties of Porous Composite Adsorbents for Adsorption Cooling and Desalination Systems: A Mini-Review
,”
Energy Fuels
,
37
(
7
), pp.
4751
4768
.
40.
Wang
,
D.
,
Zhang
,
J.
,
Yang
,
Q.
,
Li
,
N.
, and
Sumathy
,
K.
,
2014
, “
Study of Adsorption Characteristics in Silica Gel-Water Adsorption Refrigeration
,”
Appl. Energy
,
113
, pp.
734
741
.
41.
Zylka
,
A.
,
Krzywanski
,
J.
,
Czakiert
,
T.
,
Idziak
,
K.
,
Sosnowski
,
M.
,
Grabowska
,
K.
,
Prauzner
,
T.
, and
Nowak
,
W.
,
2019
, “
The 4th Generation of CeSFaMB in Numerical Simulations for CuO-Based Oxygen Carrier in CLC System
,”
Fuel
,
255
, p.
115776
.
42.
Souza-Santos
,
M. L.
,
2007
, “
A New Version of CSFB, Comprehensive Simulator for Fluidised Bed Equipment
,”
Fuel
,
86
(
12–13
), pp.
1684
1709
.
43.
Souza-Santos
,
M. L.
,
2010
,
Solid Fuels Combustion and Gasification: Modeling, Simulation, and Equipment Operations
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
44.
de Souza-Santos
,
M. L.
, and
Chávez
,
J. V.
,
2012
, “
Development of Studies on Advanced Power Generation Based on Combined Cycle Using a Single High-Pressure Fluidized Bed Boiler and Consuming Sugar Cane Bagasse
,”
Energy Fuels
,
26
(
3
), pp.
1952
1963
.
45.
Krzywanski
,
J.
,
Żyłka
,
A.
,
Czakiert
,
T.
,
Kulicki
,
K.
,
Jankowska
,
S.
, and
Nowak
,
W.
,
2017
, “
A 1.5D Model of a Complex Geometry Laboratory Scale Fuidized Bed CLC Equipment
,”
Powder Technol.
,
316
, pp.
592
598
.
46.
Krzywanski
,
J.
,
Sztekler
,
K.
,
Lasek
,
L.
,
Kalawa
,
W.
,
Grabowska
,
K.
,
Sosnowski
,
M.
,
Zylka
,
A.
,
Skrobek
,
D.
,
Nowak
,
W.
, and
Shboul
,
B.
,
2025
, “
Performance Enhancement of Adsorption Cooling and Desalination Systems by Fluidized Bed Integration: Experimental and Big Data Optimization
,”
Energy
,
315
, p.
134347
.
47.
Krzywanski
,
J.
,
Skrobek
,
D.
,
Zylka
,
A.
,
Grabowska
,
K.
,
Kulakowska
,
A.
,
Sosnowski
,
M.
,
Nowak
,
W.
, and
Blanco-Marigota
,
A. M.
,
2023
, “
Heat and Mass Transfer Prediction in Fluidized Beds of Cooling and Desalination Systems by AI Approach
,”
Appl. Therm. Eng.
,
225
, p.
120200
.
48.
Krzywanski
,
J.
,
Wesolowska
,
M.
,
Blaszczuk
,
A.
,
Majchrzak
,
A.
,
Komorowski
,
M.
, and
Nowak
,
W.
,
2016
, “
The Non-Iterative Estimation of Bed-to-Wall Heat Transfer Coefficient in a CFBC by Fuzzy Logic Methods
,”
Procedia Eng.
,
157
, pp.
66
71
.
49.
Krzywanski
,
J.
,
Wesolowska
,
M.
,
Blaszczuk
,
A.
,
Majchrzak
,
A.
,
Komorowski
,
M.
, and
Nowak
,
W.
,
2018
, “
Fuzzy Logic and Bed-to-Wall Heat Transfer in a Large-Scale CFBC
,”
Int. J. Numer. Methods Heat Fluid Flow
,
28
(
1
), pp.
254
266
.
You do not currently have access to this content.