Abstract

In emerging economies such as India, there is an increasing need for energy, leading to an enhanced reliance on fossil fuels. To reduce global warming caused by fossil fuel consumption, gasification must be promoted to generate renewable energy supplies. This research employed a fluidized bed gasifier at a laboratory scale to gasify relatively easy-to-obtain biomass materials including pinewood, bamboo wood, and plywood. The biomass gasification is done utilizing air as a gasification medium, and the feed rate of biomass is at 4 kg/h. In the present work, temperature and equivalence ratio are chosen as critical parameters; the temperature levels are 700 °C, 750 °C, 800 °C, and 850 °C, and the equivalence ratio of 0.2, 0.25, 0.3, and 0.35, to determine the impact of temperature and equivalence ratio on the components of syngas gas (H2, CO, CH4, and CO2). At higher temperature levels, the carbon conversion efficiency, cold gas efficiency, and dry gas yield enhanced whereas beyond 800 °C a marginal difference was observed in the lower heating value. As observed, an increase in equivalence ratio results in a lower value of the lower heating value of the syngas. The study enhances biomass gasification knowledge through advanced insights regarding plywood gasification as well as optimized gasification parameter adjustments for improved system efficiency. This research confirms the feasibility of using plywood instead of pinewood or bamboo as a substitute for producing syngas.

References

1.
Cortazar
,
M.
,
Santamaria
,
L.
,
Lopez
,
G.
,
Alvarez
,
J.
,
Zhang
,
L.
,
Wang
,
R.
,
Bi
,
X.
, and
Olazar
,
M.
,
2023
, “
A Comprehensive Review of Primary Strategies for Tar Removal in Biomass Gasification
,”
Energy Convers. Manage.
,
276
, p.
116496
.
2.
Mavukwana
,
A. E.
,
Burra
,
K. R.
,
Sempuga
,
C.
,
Castaldi
,
M.
, and
Gupta
,
A. K.
,
2023
, “
Sulfur Transformation and Metals Recovery During Co-Gasification of Municipal Solid Waste and Gypsum
,”
ASME J. Energy Resour. Technol.
,
145
(
10
), p.
101501
.
3.
Manegdeg
,
R. F.
,
Rollon
,
A.
,
Ballesteros
,
F.
, Jr.
,
Magdaluyo
,
E.
, Jr.
,
De Sales-Papa
,
L.
,
Clemente
,
E.
,
Macapinlac
,
E.
,
Ibañez
,
R.
, and
Cervera
,
R. B.
,
2022
, “
Multi-Attribute Assessment of Waste-to-Energy Technologies for Medical, Industrial, and Electronic Residual Wastes
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
070908
.
4.
Benti
,
N. E.
,
Gurmesa
,
G. S.
,
Argaw
,
T.
,
Aneseyee
,
A. B.
,
Gunta
,
S.
,
Kassahun
,
G. B.
,
Aga
,
G. S.
, and
Asfaw
,
A. A.
,
2021
, “
The Current Status, Challenges and Prospects of Using Biomass Energy in Ethiopia
,”
Biotechnol. Biofuels
,
14
, pp.
1
24
.
5.
Kada
,
C.
,
Maache
,
M.
,
Kada
,
K.
,
Selim
,
O. M.
,
Youssef
,
M. A. S.
, and
Amano
,
R. S.
,
2025
, “
Pyrolysis Treatment for Sludge and Animal Manures: Impact of Heating Rate
,”
ASME J. Energy Res. Technol. Part A
,
1
(
3
), p.
031502
.
6.
Zhao
,
Y.
,
Feng
,
D.
,
Zhang
,
Z.
,
Sun
,
S.
,
Che
,
H.
, and
Luan
,
J.
,
2018
, “
Experimental Study on Autothermal Cyclone air Gasification of Biomass
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
042001
.
7.
Zou
,
X.
,
Zhai
,
M.
,
Liu
,
G.
,
Guo
,
L.
,
Zhang
,
Y.
, and
Wang
,
X.
,
2024
, “
Microdynamics of Biomass Steam Gasification: A Review
,”
Energy Convers. Manage.
,
306
, p.
118274
.
8.
Rouanet
,
A.
, and
Jeanmart
,
H.
,
2024
, “
Improvement of Syngas Quality From Two-Stage Downdraft Wood Gasification Through Steam and Oxygen Injection
,”
Biomass Bioenergy
,
180
, p.
106998
.
9.
Xu
,
J.
,
Miao
,
Q.
,
Huang
,
C.
,
Jin
,
H.
,
Liu
,
S.
, and
Yu
,
L.
,
2024
, “
High Value-Added Syngas Production by Supercritical Water Gasification of Biomass: Optimal Reactor Design
,”
Appl. Therm. Eng.
,
238
, p.
122068
.
10.
Khandelwal
,
K.
,
Nanda
,
S.
,
Boahene
,
P.
, and
Dalai
,
A. K.
,
2024
, “
Hydrogen Production From Supercritical Water Gasification of Canola Residues
,”
Int. J. Hydrogen Energy
,
49
, pp.
1518
1527
.
11.
Panichkittikul
,
N.
,
Mariyappan
,
V.
,
Wu
,
W.
, and
Patcharavorachot
,
Y.
,
2024
, “
Improvement of Biohydrogen Production From Biomass Using Supercritical Water Gasification and CaO Adsorption
,”
Fuel
,
361
, p.
130724
.
12.
Singh
,
R.
,
Kumar
,
R.
,
Sarangi
,
P. K.
,
Kovalev
,
A. A.
, and
Vivekanand
,
V.
,
2023
, “
Effect of Physical and Thermal Pretreatment of Lignocellulosic Biomass on Biohydrogen Production by Thermochemical Route: a Critical Review
,”
Bioresour. Technol.
,
369
, p.
128458
.
13.
Lanjekar
,
P. R.
,
Panwar
,
N. L.
, and
Agrawal
,
C.
,
2023
, “
A Comprehensive Review on Hydrogen Production Through Thermochemical Conversion of Biomass for Energy Security
,”
Bioresour. Technol. Rep.
,
21
, p.
101293
.
14.
Lozano
,
F. J.
, and
Lozano
,
R.
,
2018
, “
Assessing the Potential Sustainability Benefits of Agricultural Residues: Biomass Conversion to Syngas for Energy Generation or to Chemicals Production
,”
J. Cleaner Prod.
,
172
, pp.
4162
4169
.
15.
Matamba
,
T.
,
Iglauer
,
S.
, and
Keshavarz
,
A.
,
2022
, “
A Progress Insight of the Formation of Hydrogen Rich Syngas From Coal Gasification
,”
J. Energy Inst.
,
105
, pp.
81
102
.
16.
Lu
,
Y.
,
Li
,
Z.
,
Huang
,
C.
,
Wang
,
Y.
, and
Chen
,
Z.
,
2024
, “
Applicability Analysis of Burners Arrangement for an Improved Entrained-Flow Fine Slag Gasifier
,”
Appl. Therm. Eng.
,
248
(Part B), p.
123268
.
17.
Al-Zareer
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2018
, “
Influence of Selected Gasification Parameters on Syngas Composition From Biomass Gasification
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
041803
.
18.
Erdem
,
K.
,
Han
,
D. G.
, and
Midilli
,
A.
,
2024
, “
A Parametric Study on Hydrogen Production by Fluidized Bed Co-Gasification of Biomass and Waste Plastics
,”
Int. J. Hydrogen Energy
,
52
, pp.
1434
1444
.
19.
Saini
,
R.
,
Mahajani
,
S. M.
,
Rao
,
D. S.
, and
Narayan
,
R.
,
2024
, “
Co-Gasification of Lignite and Spent Tea Waste for the Generation of Hydrogen-Rich Syngas in a Fluidized Bed Gasifier
,”
Int. J. Hydrogen Energy
,
68
, pp.
823
833
.
20.
Sharma
,
A. K.
,
Antil
,
S.
, and
Sachdeva
,
G.
,
2023
, “
Small-Scale Toroidal Fluidized Bed Gasification System: Development and Experimental Aspects
,”
ASME J. Energy Resour. Technol.
,
145
(
5
), p.
051501
.
21.
Yesilova
,
N.
,
Tezer
,
O.
,
Ongen
,
A.
, and
Ayol
,
A.
,
2024
, “
Enhancing Biomass Gasification: A Comparative Study of Catalyst Applications in Updraft and Modifiable-Downdraft Fixed Bed Reactors
,”
Int. J. Hydrogen Energy
,
76
, pp.
290
303
.
22.
Laohalidanond
,
K.
,
Kerdsuwan
,
S.
,
Burra
,
K. R. G.
,
Li
,
J.
, and
Gupta
,
A. K.
,
2021
, “
Syngas Generation From Landfills Derived Torrefied Refuse Fuel Using a Downdraft Gasifier
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052102
.
23.
Pocha
,
C. K. R.
,
Chia
,
W. Y.
,
Silvanir
,
Kurniawan
,
T. A.
,
Khoo
,
K. S.
, and
Chew
,
K. W.
,
2023
, “
Thermochemical Conversion of Different Biomass Feedstocks Into Hydrogen for Power Plant Electricity Generation
,”
Fuel
,
340
, p.
127472
.
24.
Tezer
,
Ö
,
Karabağ
,
N.
,
Öngen
,
A.
,
Çolpan
,
, and
Ayol
,
A.
,
2022
, “
Biomass Gasification for Sustainable Energy Production: A Review
,”
Int. J. Hydrogen Energy
,
47
(
34
), pp.
15419
15433
.
25.
Çağlı
,
E. E.
, and
Ayas
,
N.
,
2024
, “
H2 Rich Gas Production From Agricultural Waste Mixture Over Ni/Kaolin and Ni/Bentonite Catalyst by Gasification
,”
Int. J. Hydrogen Energy
,
52
, pp.
909
922
.
26.
Öztan
,
H.
,
Çapoğlu
,
İ. K.
,
Uysal
,
D.
, and
Doğan
,
Ö. M.
,
2023
, “
A Parametric Study to Optimize the Temperature of Hazelnut and Walnut Shell Gasification for Hydrogen and Methane Production
,”
Bioresour. Technol. Rep.
,
23
, p.
101581
.
27.
Rashwan
,
S. S.
,
Boulet
,
M.
, and
Moreau
,
S.
,
2025
, “
Maximizing Waste-to-Energy Potential: Optimizing Batch Torrefaction Reactor of Refuse-Derived Fuel for Efficient Gasification
,”
ASME J. Energy Res. Technol. Part A
,
1
(
1
), p.
011301
.
28.
Joshi
,
N. C.
,
Sinha
,
S.
,
Bhatnagar
,
P.
,
Nath
,
Y.
,
Negi
,
B.
,
Kumar
,
V.
, and
Gururani
,
P.
,
2024
, “
A Concise Review on Waste Biomass Valorization Through Thermochemical Conversion
,”
Curr. Res. Microb. Sci.
,
6
, p.
100237
.
29.
Maache
,
M.
,
Kada
,
C.
,
Amano
,
R. S.
,
Kumano
,
H.
,
Selim
,
O. M.
, and
Kada
,
K.
,
2024
, “
Experimental and Mathematical Investigation of Thermochemical Conversion for Horse Manure
,”
ASME J. Energy Resour. Technol.
,
146
(
12
), p.
121701
.
30.
Wang
,
Z.
,
Burra
,
K. G.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2021
, “
Co-Pyrolysis of Waste Plastic and Solid Biomass for Synergistic Production of Biofuels and Chemicals—A Review
,”
Prog. Energy Combust. Sci.
,
84
, p.
100899
.
31.
Felix
,
C. B.
,
Chen
,
W. H.
,
Ubando
,
A. T.
,
Park
,
Y. K.
,
Lin
,
K. Y. A.
,
Pugazhendhi
,
A.
,
Nguyen
,
T. B.
, and
Dong
,
C. D.
,
2022
, “
A Comprehensive Review of Thermogravimetric Analysis in Lignocellulosic and Algal Biomass Gasification
,”
Chem. Eng. J.
,
445
, p.
136730
.
32.
Taipabu
,
M. I.
,
Viswanathan
,
K.
,
Wu
,
W.
,
Hattu
,
N.
, and
Atabani
,
A. E.
,
2022
, “
A Critical Review of the Hydrogen Production From Biomass-Based Feedstocks: Challenge, Solution, and Future Prospect
,”
Process Saf. Environ. Prot.
,
164
, pp.
384
407
.
33.
Qaseem
,
M. F.
,
Shaheen
,
H.
, and
Wu
,
A. M.
,
2021
, “
Cell Wall Hemicellulose for Sustainable Industrial Utilization
,”
Renewable Sustainable Energy Rev.
,
144
, p.
110996
.
34.
Liu
,
J.
,
Li
,
X.
,
Li
,
M.
, and
Zheng
,
Y.
,
2022
, “Lignin Biorefinery: Lignin Source, Isolation, Characterization, and Bioconversion,”
Advances in Bioenergy
,
Y.
Li
and
Y.
Zhou
, eds., Vol.
7
,
Elsevier
,
New York
, pp.
211
270
.
35.
Cao
,
Y.
,
Bai
,
Y.
, and
Du
,
J.
,
2021
, “
Air-Gasification of Pine Sawdust Using Dolomite as In-Bed Material: Effects of Gasification Conditions on Product Characteristics
,”
J. Energy Inst.
,
95
, pp.
187
192
.
36.
Aktas
,
F.
,
Mavukwana
,
A. E.
,
Burra
,
K. R. G.
, and
Gupta
,
A. K.
,
2024
, “
Role of Spent FCC Catalyst in Pyrolysis and CO2-Assisted Gasification of Pinewood
,”
Appl. Energy
,
366
, p.
123350
.
37.
Pang
,
Y.
,
Zhu
,
X.
,
Li
,
N.
, and
Wang
,
Z.
,
2024
, “
Study on CO2 Co-Gasification of Cellulose and High-Density Polyethylene via TG-FTIR and ReaxFF MD
,”
Process Saf. Environ. Prot.
,
186
, pp.
1471
1480
.
38.
Yek
,
P. N. Y.
,
Chan
,
Y. H.
,
Foong
,
S. Y.
,
Mahari
,
W. A. W.
,
Chen
,
X.
,
Liew
,
R. K.
,
Ma
,
N. L.
, et al
,
2024
, “
CO-Processing Plastics Waste and Biomass by Pyrolysis–Gasification: A Review
,”
Environ. Chem. Lett.
,
22
(
1
), pp.
171
188
.
39.
Mojaver
,
P.
,
Hasanzadeh
,
R.
,
Chitsaz
,
A.
,
Azdast
,
T.
, and
Mojaver
,
M.
,
2024
, “
Tri-Objective Central Composite Design Optimization of Co-Gasification of Eucalyptus Biomass and Polypropylene Waste
,”
Biomass Convers. Biorefin.
,
14
(
4
), pp.
4829
4841
.
40.
He
,
Z. M.
,
Deng
,
Y. J.
,
Cao
,
J. P.
, and
Zhao
,
X. Y.
,
2024
, “
Agglomeration and Transformation of Different Types of Inorganic Potassium in Biomass During Co-Gasification With Coal
,”
Fuel
,
357
, p.
129728
.
41.
Saravanakumar
,
A.
,
Sudha
,
M. R.
,
Pradeshwaran
,
V.
,
Ling
,
J. L. J.
, and
Lee
,
S. H.
,
2024
, “
Green Circular Economy of Co-Gasification With Municipal Solid Waste and Wood Waste in a Novel Downdraft Gasifier With Rotating Grate
,”
Chem. Eng. J.
,
479
, p.
147987
.
42.
Chakraborty
,
S.
,
Mohanty
,
K.
, and
Vinu
,
R.
,
2024
, “
CO-Pyrolysis of Bamboo Biomass with Polypropylene Coverall: Distributed Activation Energy Modeling and Pyrolysate Composition Studies
,”
Renewable energy
,
220
, p.
119533
.
43.
Huang
,
J.
,
Li
,
D.
,
Huang
,
L.
,
Tan
,
S.
, and
Liu
,
T.
,
2022
, “
Bio-Based Aerogel Based on Bamboo, Waste Paper, and Reduced Graphene Oxide for Oil/Water Separation
,”
Langmuir
,
38
(
10
), pp.
3064
3075
.
44.
Pang
,
B.
,
Zhou
,
T.
,
Cao
,
X. F.
,
Zhao
,
B. C.
,
Sun
,
Z.
,
Liu
,
X.
,
Chen
,
Y.-Y.
, and
Yuan
,
T. Q.
,
2022
, “
Performance and Environmental Implication Assessments of Green Bio-Composite From Rice Straw and Bamboo
,”
J. Cleaner Prod.
,
375
, p.
134037
.
45.
Kakati
,
U.
,
Sakhiya
,
A. K.
,
Baghel
,
P.
,
Trada
,
A.
,
Mahapatra
,
S.
,
Upadhyay
,
D.
, and
Kaushal
,
P.
,
2022
, “
Sustainable Utilization of Bamboo Through Air-Steam Gasification in Downdraft Gasifier: Experimental and Simulation Approach
,”
Energy
,
252
, p.
124055
.
46.
Liang
,
F.
,
Wang
,
R.
,
Hongzhong
,
X.
,
Yang
,
X.
,
Zhang
,
T.
,
Hu
,
W.
,
Mi
,
B.
, and
Liu
,
Z.
,
2018
, “
Investigating Pyrolysis Characteristics of Moso Bamboo Through TG-FTIR and Py-GC/MS
,”
Bioresour. Technol.
,
256
, pp.
53
60
.
47.
Nguyen
,
H. N.
,
2024
, “
Integrated CO2-Hydrothermal Carbonization and High Temperature Steam Gasification of Bamboo Feedstock: A Comprehensive Experimental Study
,”
Adv. Bamboo Sci.
,
6
, p.
100060
.
48.
Liu
,
Y.
,
Zhang
,
J.
,
Hu
,
H.
,
Dai
,
Q.
,
Zou
,
C.
,
Cao
,
C.
,
Zhao
,
Y.
, and
Li
,
A.
,
2024
, “
Influence Mechanisms of Torrefaction on Syngas Production From Bio-Waste Molten Salt Thermal Treatment
,”
Fuel
,
363
, p.
130965
.
49.
Mi
,
B.
,
Liu
,
Z.
,
Hu
,
W.
,
Wei
,
P.
,
Jiang
,
Z.
, and
Fei
,
B.
,
2016
, “
Investigating Pyrolysis and Combustion Characteristics of Torrefied Bamboo, Torrefied Wood and Their Blends
,”
Bioresour. Technol.
,
209
, pp.
50
55
.
50.
Mallick
,
D.
,
Mahanta
,
P.
, and
Moholkar
,
V. S.
,
2020
, “
Co–Gasification of Coal/Biomass Blends in 50 kWe Circulating Fluidized Bed Gasifier
,”
J. Energy Inst.
,
93
(
1
), pp.
99
111
.
51.
Zhao
,
S.
, and
Chen
,
L.
,
2020
, “
Utilization of Biomass Waste for Activated Carbon Production by Steam Gasification in a Rotary Reactor: Experimental and Theoretical Approach
,”
Biomass Convers. Biorefin.
,
12
(
9
), pp.
3943
3953
.
52.
Janajreh
,
I.
,
Raza
,
S. S.
, and
Valmundsson
,
A. S.
,
2013
, “
Plasma Gasification Process: Modeling, Simulation and Comparison With Conventional air Gasification
,”
Energy Convers. Manage.
,
65
, pp.
801
809
.
53.
Fateh
,
T.
,
Rogaume
,
T.
,
Luche
,
J.
,
Richard
,
F.
, and
Jabouille
,
F.
,
2014
, “
Characterization of the Thermal Decomposition of Two Kinds of Plywood With a Cone Calorimeter–FTIR Apparatus
,”
J. Anal. Appl. Pyrolysis
,
107
, pp.
87
100
.
54.
Mahapatro
,
A.
,
Kumar
,
A.
, and
Mahanta
,
P.
,
2020
, “
Parametric Study and Exergy Analysis of the Gasification of Sugarcane Bagasse in a Pressurized Circulating Fluidized Bed Gasifier
,”
J. Therm. Anal. Calorim.
,
141
(
6
), pp.
2635
2645
.
55.
Mahapatro
,
A.
, and
Mahanta
,
P.
,
2020
, “
Gasification Studies of Low-Grade Indian Coal and Biomass in a Lab-Scale Pressurized Circulating Fluidized Bed
,”
Renewable energy
,
150
, pp.
1151
1159
.
56.
Dasar
,
S. R.
,
Boche
,
A. M.
,
Yadav
,
A. K.
, and
Anish
,
S.
,
2023
, “
Sorption–Desorption Characteristics of Dried Cow Dung With PVP and Clay as Composite Desiccants: Experimental and Exergetic Analysis
,”
Renewable Energy
,
202
, pp.
394
404
.
57.
Parrillo
,
F.
,
Ardolino
,
F.
,
Boccia
,
C.
,
Calì
,
G.
,
Marotto
,
D.
,
Pettinau
,
A.
, and
Arena
,
U.
,
2023
, “
CO-Gasification of Plastics Waste and Biomass in a Pilot Scale Fluidized Bed Reactor
,”
Energy
,
273
, p.
127220
.
58.
Tian
,
Y.
,
He
,
D.
,
Zeng
,
Y.
,
Hu
,
L.
,
Du
,
J.
,
Luo
,
Z.
,
Ma
,
W.
, and
Zhang
,
Z.
,
2023
, “
Experimental Research on Hydrogen-Rich Syngas Yield by Catalytic Biomass air-Gasification Over Ni/Olivine as In-Situ Tar Destruction Catalyst
,”
J. Energy Inst.
,
108
, p.
101263
.
59.
Hervy
,
M.
,
Remy
,
D.
,
Dufour
,
A.
, and
Mauviel
,
G.
,
2019
, “
Air-Blown Gasification of Solid Recovered Fuels (SRFs) in Lab-Scale Bubbling Fluidized-Bed: Influence of the Operating Conditions and of the SRF Composition
,”
Energy Convers. Manage.
,
181
, pp.
584
592
.
60.
Zhao
,
Z.
,
Kong
,
W.
,
Wu
,
S.
,
Zeng
,
X.
, and
Cui
,
P.
,
2023
, “
High Quality Syngas Production From Catalytic Steam Gasification of Biomass With Calcium-Rich Construction Waste
,”
J. Energy Inst.
,
111
, p.
101433
.
61.
Kang
,
B. S.
,
Farooq
,
A.
,
Valizadeh
,
B.
,
Lee
,
D.
,
Seo
,
M. W.
,
Jung
,
S. C.
,
Hussain
,
M.
, et al
,
2024
, “
Valorization of Sewage Sludge via Air/Steam Gasification Using Activated Carbon and Biochar as Catalysts
,”
Int. J. Hydrogen Energy
,
54
, pp.
284
293
.
62.
Wang
,
C.
,
Zhu
,
L.
,
Zhang
,
M.
,
Han
,
Z.
,
Jia
,
X.
,
Bai
,
D.
,
Duo
,
W.
, et al
,
2022
, “
A Two-Stage Circulated Fluidized Bed Process to Minimize Tar Generation of Biomass Gasification for Fuel Gas Production
,”
Appl. Energy
,
323
, p.
119639
.
63.
Anniwaer
,
A.
,
Chaihad
,
N.
,
Zahra
,
A. C. A.
,
Kurnia
,
I.
,
Kasai
,
Y.
,
Kongparakul
,
S.
,
Samart
,
C.
,
Kusakabe
,
K.
,
Abudula
,
A.
, and
Guan
,
G.
,
2023
, “
Utilization of Fruit Waste for H2-Rich Syngas Production via Steam Co-Gasification With Brown Coal
,”
Carbon Resour. Convers.
,
6
(
4
), pp.
315
325
.
64.
Bandara
,
J. C.
,
Jaiswal
,
R.
,
Nielsen
,
H. K.
,
Moldestad
,
B. M.
, and
Eikeland
,
M. S.
,
2021
, “
Air Gasification of Wood Chips, Wood Pellets and Grass Pellets in a Bubbling Fluidized Bed Reactor
,”
Energy
,
233
, p.
121149
.
65.
Babaei
,
K.
,
Bozorg
,
A.
, and
Tavasoli
,
A.
,
2021
, “
Hydrogen-Rich Gas Production Through Supercritical Water Gasification of Chicken Manure Over Activated Carbon/Ceria-Based Nickel Catalysts
,”
J. Anal. Appl. Pyrolysis
,
159
, p.
105318
.
66.
Duque-Uribe
,
D.
,
Montiel-Bohórquez
,
N. D.
, and
Pérez
,
J. F.
,
2023
, “
Technoeconomic Analysis of a Small-Scale Downdraft Gasification-Based Cogeneration Power Plant Using Green Wastes
,”
ASME J. Energy Resour. Technol.
,
145
(
8
), p.
081401
.
67.
Xu
,
T.
,
Chen
,
J.
,
Wu
,
Y.
,
Gao
,
X.
, and
Bhattacharya
,
S.
,
2022
, “
Syngas Production From Two-Step CO2 Gasification of Low Rank Coal in an Entrained Flow Reactor
,”
J. Energy Inst.
,
103
, pp.
169
176
.
68.
Amin
,
N.
,
Khan
,
Z.
,
Razzaq
,
A.
,
Ghauri
,
M.
,
Khurram
,
S.
,
Inayat
,
A.
,
Jaffery
,
M.
, and
Hameed
,
Z.
,
2024
, “
Municipal Solid Waste Air Gasification Using Waste Marble Powder as a Catalyst for Syngas Production
,”
J. Energy Inst.
,
113
, p.
101496
.
69.
Zhu
,
D.
,
Wang
,
Q.
,
Xie
,
G.
,
Ye
,
Z.
,
Zhu
,
Z.
, and
Ye
,
C.
,
2024
, “
Effect of Air Equivalence Ratio on the Characteristics of Biomass Partial Gasification for Syngas and Biochar Co-Production in the Fluidized Bed
,”
Renewable Energy
,
222
, p.
119881
.
70.
Kim
,
J. W.
,
Jeong
,
Y. S.
, and
Kim
,
J. S.
,
2022
, “
Bubbling Fluidized Bed Biomass Gasification Using a Two-Stage Process at 600 °C: A Way to Avoid Bed Agglomeration
,”
Energy
,
250
, p.
123882
.
71.
Manu
,
J.
,
Kailas
,
T. G.
, and
Madav
,
V.
,
2023
, “
Exploring the Synergetic Effects of Rice Husk, Cashew Shell, and Cashew Husk Biomass Blends on Fluidized Bed Gasification for Enhanced Hydrogen Production
,”
J. Cleaner Prod.
,
419
, p.
137991
.
You do not currently have access to this content.