Graphical Abstract Figure

Schematic representation of methanol/diesel dual-fuel modeling in a compression ignition (CI) engine

Graphical Abstract Figure

Schematic representation of methanol/diesel dual-fuel modeling in a compression ignition (CI) engine

Close modal

Abstract

Methanol is gaining significant attention for its potential in green energy production and its easy handling and storage. Using methanol in conjunction with diesel, under dual operation, does not require significant hardware adaptations (this is the case of methanol port fuel injection) and it enables the replacement of a fossil fuel with a low-carbon and oxygenated sustainable fuel. This work aims to analyze the impact of the methanol energy substitution ratio on a compression ignition engine running in dual mode with heptane and methanol. Numerical validations are conducted across four cases, i.e., 20%, 35%, 45%, and 55% methanol energy substitution ratio. Simulations are conducted with Eulerian–Lagrangian framework for which the continuous media is modeled using an Eulerian approach, though the dispersed phase (spray) is pursued following the former. Turbulence is governed using the renormalization group k–epsilon. Key parameters, incorporating spray characteristics, reaction zone distribution, and combustion behavior, are analyzed. The findings show that high methanol energy substitution values slow down the spray vaporization and affect the combustion pattern. At the lowest methanol energy substitution ratio (below 20%), flames originate at the periphery and move inward, while at higher ratios, flame starts near the spray region and spreads across the entire chamber. The ignition delay is extended with the rise of the methanol energy substitution ratio, though combustion duration decreases. Simulation results are compared against experimental data to ensure the validation of the entire global model.

References

1.
Leach
,
F.
,
Kalghatgi
,
G.
,
Stone
,
R.
, and
Miles
,
P.
,
2020
, “
The Scope for Improving the Efficiency and Environmental Impact of Internal Combustion Engines
,”
Transp. Eng.
,
1
, p.
100005
.
2.
Villenave
,
N.
,
Dayma
,
G.
,
Brequigny
,
P.
, and
Foucher
,
F.
,
2024
, “
Experimental Investigation of NOx Impact on Ignition Delay Times for Lean H2/Air Mixtures Using a Rapid Compression Machine Under Internal Combustion Engine Conditions
,”
Fuel
,
374
, p.
132482
.
3.
Chehade
,
G.
, and
Dincer
,
I.
,
2021
, “
Progress in Green Ammonia Production as Potential Carbon-Free Fuel
,”
Fuel
,
299
, p.
120845
.
4.
Badra
,
J. A.
,
Khaled
,
F.
,
Tang
,
M.
,
Pei
,
Y.
,
Kodavasal
,
J.
,
Pal
,
P.
,
Owoyele
,
O.
,
Fuetterer
,
C.
,
Mattia
,
B.
, and
Aamir
,
F.
,
2021
, “
Engine Combustion System Optimization Using Computational Fluid Dynamics and Machine Learning: A Methodological Approach
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022306
.
5.
Yang
,
Y.
,
Long
,
W.
,
Dong
,
P.
,
Qian
,
Y.
,
Cao
,
J.
, and
Dong
,
D.
,
2024
, “
Performance of Large-Bore Methanol/Diesel Dual Direct Injection Engine Applying Asymmetrical Diesel Nozzle Strategies
,”
Appl. Therm. Eng.
,
244
, p.
122674
.
6.
Verhelst
,
S.
,
Turner
,
J. W.
,
Sileghem
,
L.
, and
Vancoillie
,
J.
,
2019
, “
Methanol as a Fuel for Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
70
, pp.
43
88
.
7.
Svanberg
,
M.
,
Ellis
,
J.
,
Lundgren
,
J.
, and
Landälv
,
I.
,
2018
, “
Renewable Methanol as a Fuel for the Shipping Industry
,”
Renewable Sustainable Energy Rev.
,
94
, pp.
1217
1228
.
8.
Cheng
,
C.
,
Faurskov Cordtz
,
R.
,
Dyhr Pedersen
,
T.
,
Winther
,
K.
,
Langballe Førby
,
N.
, and
Schramm
,
J.
,
2023
, “
Investigation of Combustion Characteristics, Physical and Chemical Ignition Delay of Methanol Fuel in a Heavy-Duty Turbo-Charged Compression Ignition Engine
,”
Fuel
,
348
, p.
128536
.
9.
Gong
,
C.
,
Yi
,
L.
,
Zhang
,
Z.
,
Sun
,
J.
, and
Liu
,
F.
,
2020
, “
Assessment of Ultra-Lean Burn Characteristics for a Stratified-Charge Direct-Injection Spark-Ignition Methanol Engine Under Different High Compression Ratios
,”
Appl. Energy
,
261
, p.
114478
.
10.
Li
,
Y.
,
Cai
,
Y.
,
Jia
,
M.
,
Wang
,
Y.
,
Su
,
X.
, and
Li
,
L.
,
2024
, “
A Full-Parameter Computational Optimization of Both Injection Parameters and Injector Layouts for a Methanol/Diesel Dual-Fuel Direct Injection Compression Ignition Engine
,”
Fuel
,
369
, p.
131733
.
11.
Wen
,
M.
, et al
,
2024
, “
Effects of Operating Parameters on Start Performance of Compression Ignition Engine by Using High-Pressure Direct-Injection Pure Methanol Fuel
,”
Appl. Therm. Eng.
,
249
, p.
123352
.
12.
Zhang
,
H.
,
Yang
,
Y.
,
Li
,
C.
,
Li
,
Q.
,
Liu
,
H.
, and
Huang
,
Z.
,
2024
, “
Investigation on a Combined System With Methanol on-Board Hydrogen Production and Internal Combustion Engine
,”
Fuel
,
375
, p.
132586
.
13.
Duan
,
Q.
,
Kou
,
H.
,
Li
,
T.
,
Yin
,
X.
,
Zeng
,
K.
, and
Wang
,
L.
,
2023
, “
Effects of Injection and Spark Timings on Combustion, Performance and Emissions (Regulated and Unregulated) Characteristics in a Direct Injection Methanol Engine
,”
Fuel Process. Technol.
,
247
, p.
107758
.
14.
Valera
,
H.
,
Kumar
,
D.
, and
Agarwal
,
A. K.
,
2022
, “
Evaluating the Effect of Variable Methanol Injection Timings in a Novel Co-Axial Fuel Injection System Equipped Locomotive Engine
,”
J. Cleaner Prod.
,
349
, p.
131452
.
15.
Kumar
,
D.
,
Sonawane
,
U.
,
Chandra
,
K.
, and
Agarwal
,
A. K.
,
2022
, “
Experimental Investigations of Methanol Fumigation Via Port Fuel Injection in Preheated Intake Air in a Single Cylinder Dual-Fuel Diesel Engine
,”
Fuel
,
324
, p.
124340
.
16.
Li
,
Y.
, et al
,
2018
, “
Principle of Determining the Optimal Operating Parameters Based on Fuel Properties and Initial Conditions for RCCI Engines
,”
Fuel
,
216
, pp.
284
295
.
17.
Singh
,
A. P.
,
Sharma
,
N.
,
Satsangi
,
D. P.
, and
Agarwal
,
A. K.
,
Jun. 2020
, “
Effect of Fuel Injection Pressure and Premixed Ratio on Mineral Diesel-Methanol Fueled Reactivity Controlled Compression Ignition Mode Combustion Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122301
.
18.
Agarwal
,
A. K.
,
Sharma
,
N.
,
Singh
,
A. P.
,
Kumar
,
V.
,
Satsangi
,
D. P.
, and
Patel
,
C.
,
2019
, “
Adaptation of Methanol-Dodecanol-Diesel Blend in Diesel Genset Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102203
.
19.
Zhao
,
Y.
,
Liu
,
X.
, and
Kook
,
S.
,
2024
, “
Effect of Three-Hole Nozzle Orientations on Sprays and Combustion in Methanol-Diesel Dual Direct Injection Engines
,”
Appl. Therm. Eng.
,
254
, p.
123953
.
20.
Yang
,
D.
,
Wei
,
S.
,
Ma
,
Y.
,
Jiaqiang
,
E.
, and
Zhao
,
J.
,
2024
, “
Influence of Critical Parameters on Combustion and Emission Characteristics of Methanol/Diesel Dual Fuel Compression Combustion Engine
,”
Fuel
,
368
, p.
131647
.
21.
Yu
,
J.
,
Zhou
,
F.
,
Fu
,
J.
,
Huang
,
D.
,
Wu
,
C.
, and
Liu
,
J.
,
2024
, “
Research on the Influence of Injection Strategies on the In-Cylinder Combustion Process and Emissions of Methanol
,”
Biomass Bioenergy
,
188
, p.
107340
.
22.
Yu
,
Y.
, and
Wen
,
H.
,
2024
, “
Investigation on Efficient and Clean Combustion Pre-Injection Strategy of a Diesel/Methanol Dual Direct-Injection Marine Engine Under Full Load
,”
Case Stud. Therm. Eng.
,
59
, p.
104472
.
23.
Shi
,
M.
,
Wu
,
B.
,
Wang
,
J.
,
Jin
,
S.
, and
Chen
,
T.
,
2024
, “
Optimization of Methanol/Diesel Dual-Fuel Engines at Low Load Condition for Heavy-Duty Vehicles to Operated at High Substitution Ratio by Using Single-Hole Injector for Direct Injection of Methanol
,”
Appl. Therm. Eng.
,
246
, p.
122854
.
24.
Zhu
,
J.
,
Wang
,
Z.
,
Li
,
R.
,
Liu
,
S.
, and
Li
,
M.
,
2024
, “
Experimental and Simulation Study of Methanol/Coal-to-Liquid (CTL) Reactivity and Combustion Characteristics of Diesel Engines in RCCI Mode
,”
Fuel
,
357
, p.
129799
.
25.
Feng
,
S.
,
Zhang
,
S.
,
Zhang
,
H.
, and
Shi
,
J.
,
2024
, “
Effect of Nozzle Geometry on Combustion of a Diesel-Methanol Dual-Fuel Direct Injection Engine
,”
Fuel
,
357
, p.
129734
.
26.
Jiang
,
M.
, et al
,
2024
, “
Numerical Optimization of Injector Hole Arrangement for Marine Methanol/Diesel Direct Dual Fuel Stratification Engines
,”
Appl. Therm. Eng.
,
257
, p.
124456
.
27.
Dierickx
,
J.
,
Verbiest
,
J.
,
Janvier
,
T.
,
Peeters
,
J.
,
Sileghem
,
L.
, and
Verhelst
,
S.
,
2021
, “
Retrofitting a High-Speed Marine Engine to Dual-Fuel Methanol-Diesel Operation: A Comparison of Multiple and Single Point Methanol Port Injection
,”
Fuel Commun.
,
7
, p.
100010
.
28.
Ning
,
L.
,
Duan
,
Q.
,
Kou
,
H.
, and
Zeng
,
K.
,
2020
, “
Parametric Study on Effects of Methanol Injection Timing and Methanol Substitution Percentage on Combustion and Emissions of Methanol/Diesel Dual-Fuel Direct Injection Engine at Full Load
,”
Fuel
,
279
(
June
), p.
118424
.
29.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG κ–ε Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.
30.
Tan
,
Z.
,
2003
,
Multi-Dimensional Modeling of Ignition and Combustion in Premixed and DIS/CI (Direct Injection Spark/Compression Ignition) Engines
,
University of Wisconsin–Madison
,
Madison, WI
.
31.
Kong
,
S.-C.
, and
Reitz
,
R. D.
,
Jun. 2002
, “
Use of Detailed Chemical Kinetics to Study HCCI Engine Combustion With Consideration of Turbulent Mixing Effects
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
702
707
.
32.
Kong
,
D.
,
Eckhoff
,
R. K.
, and
Alfert
,
F.
,
1995
, “
Auto-Ignition of CH4 Air, C3H8 Air, CH4/C3H8/Air and CH4/CO2/Air Using a 11 Ignition Bomb
,”
J. Hazard. Mater.
,
40
(
1
), pp.
69
84
.
33.
Beale
,
J. C.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Spray Atomization With the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model
,”
Atomization Sprays
,
9
(
6
), pp.
623
650
.
34.
Ra
,
Y.
, and
Reitz
,
R. D.
,
2009
, “
A Vaporization Model for Discrete Multi-Component Fuel Sprays
,”
Int. J. Multiphase Flow
,
35
(
2
), pp.
101
117
.
35.
Puduppakkam
,
K. V.
,
Liang
,
L.
,
Naik
,
C. V.
,
Meeks
,
E.
,
Kokjohn
,
S. L.
, and
Reitz
,
R. D.
,
2011
, “
Use of Detailed Kinetics and Advanced Chemistry-Solution Techniques in CFD to Investigate Dual-Fuel Engine Concepts
,”
SAE Int. J. Engines
,
4
(
1
), pp.
1127
1149
.
36.
Chen
,
Z.
,
Chen
,
H.
,
Wang
,
L.
,
Geng
,
L.
, and
Zeng
,
K.
,
2020
, “
Parametric Study on Effects of Excess Air/Fuel Ratio, Spark Timing, and Methanol Injection Timing on Combustion Characteristics and Performance of Natural Gas/Methanol Dual-Fuel Engine at Low Loads
,”
Energy Convers. Manag.
,
210
, p.
112742
.
37.
Domínguez
,
V. M.
,
Hern
,
J. J.
, and
Gim
,
B.
,
2024
, “
Exploring the Effect of Methanol and Ethanol on the Overall Performance and Substitution Window of a Dual-Fuel Compression-Ignition Engine Fueled With HVO
,”
Fuel
,
359
, p.
130529
.
38.
Domínguez
,
V. M.
,
Hernández
,
J. J.
,
Ramos
,
Á
,
Reyes
,
M.
, and
Rodríguez-Fernández
,
J.
,
2023
, “
Hydrogen or Hydrogen-Derived Methanol for Dual-Fuel Compression-Ignition Combustion: An Engine Perspective
,”
Fuel
,
333
, p.
126301
.
39.
Dominguez
,
V. M.
,
Hernandez
,
J. J.
,
Ramos
,
Á.
, and
Rodriguez-Fernandez
,
J.
,
2024
, “
Role of the Compression Ratio in Dual-Fuel Compression Ignition Combustion With Hydrogen and Methanol
,”
Energy Fuels
,
38
(
19
), pp.
19127
19136
.
40.
Reitz
,
R. D.
, and
Duraisamy
,
G.
,
2015
, “
Review of High Efficiency and Clean Reactivity Controlled Compression Ignition (RCCI) Combustion in Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
46
, pp.
12
71
.
41.
Kokjohn
,
S. L.
,
2012
, “
Reactivity Controlled Compression Ignition (RCCI) Combustion
,”
Dissertation
,
University of Wisconsin-Madison
,
Madison, WI
. https://search.library.wisc.edu/digital/AHLTSXGLPFKZFU8Z
42.
Agarwal
,
A. K.
,
Park
,
S.
,
Dhar
,
A.
,
Lee
,
C. S.
,
Park
,
S.
,
Gupta
,
T.
, and
Gupta
,
N. K.
,
2018
, “
Review of Experimental and Computational Studies on Spray, Combustion, Performance, and Emission Characteristics of Biodiesel Fueled Engines
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
120801
.
43.
Li
,
Y.
,
Jia
,
M.
,
Liu
,
Y.
, and
Xie
,
M.
,
2013
, “
Numerical Study on the Combustion and Emission Characteristics of a Methanol/Diesel Reactivity Controlled Compression Ignition (RCCI) Engine
,”
Appl. Energy
,
106
, pp.
184
197
.
44.
Bartolucci
,
L.
,
Cordiner
,
S.
,
Mulone
,
V.
,
Krishnan
,
S. R.
, and
Srinivasan
,
K. K.
,
2021
, “
A Computational Investigation of the Impact of Multiple Injection Strategies on Combustion Efficiency in Diesel-Natural Gas Dual-Fuel Low-Temperature Combustion Engines
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022305
.
45.
Saxena
,
M. R.
,
Maurya
,
R. K.
, and
Mishra
,
P.
,
2021
, “
Assessment of Performance, Combustion and Emissions Characteristics of Methanol-Diesel Dual-Fuel Compression Ignition Engine: A Review
,”
J. Traffic Transp. Eng.
,
8
(
5
), pp.
638
680
.
46.
Gong
,
C.
,
Li
,
Z.
,
Chen
,
Y.
,
Liu
,
J.
,
Liu
,
F.
, and
Han
,
Y.
,
2019
, “
Influence of Ignition Timing on Combustion and Emissions of a Spark-Ignition Methanol Engine With Added Hydrogen Under Lean-Burn Conditions
,”
Fuel
,
235
, pp.
227
238
.
47.
Duraisamy
,
G.
,
Rangasamy
,
M.
, and
Govindan
,
N.
,
2020
, “
A Comparative Study on Methanol/Diesel and Methanol/PODE Dual Fuel RCCI Combustion in an Automotive Diesel Engine Conventional Mode of Operation
,”
Renewable Energy
,
145
, pp.
542
556
.
48.
Ning
,
L.
, et al
,
2020
, “
A Comparative Study on the Combustion and Emissions of a Non-Road Common Rail Diesel Engine Fueled With Primary Alcohol Fuels (Methanol, Ethanol, and n-Butanol)/Diesel Dual Fuel
,”
Fuel
,
266
, p.
117034
.
49.
Yang
,
R.
,
Ran
,
Z.
,
Ristow Hadlich
,
R.
, and
Assanis
,
D.
,
2022
, “
A Double-Wiebe Function for Reactivity Controlled Compression Ignition Combustion Using Reformate Diesel
,”
ASME J. Energy Resour. Technol.
,
144
(
11
), p.
112301
.
50.
Chen
,
Z.
, et al
,
2016
, “
Study of Cylinder-to-Cylinder Variation in a Diesel Engine Fueled With Diesel/Methanol Dual Fuel
,”
Fuel
,
170
, pp.
67
76
.
51.
Calam
,
A.
,
2020
, “
Effects of the Fusel Oil Usage in HCCI Engine on Combustion, Performance and Emission
,”
Fuel
,
262
, p.
116503
.
You do not currently have access to this content.