Graphical Abstract Figure

A novel mathematical and thermodynamic optimization tool integrated with EES software to detect the evaporator's thermal load and defrosting thermal load in cold climates

Graphical Abstract Figure

A novel mathematical and thermodynamic optimization tool integrated with EES software to detect the evaporator's thermal load and defrosting thermal load in cold climates

Close modal

Abstract

This study investigates the performance of air and hybrid-source heat pumps, particularly in cold climates where freezing can compromise efficiency. The problem statements to solve during the research are investigating the air-sourced Heat Pump Evaporator cooling load areas of cold weather based on the daily ambient conditions and optimizing the defrosting thermal load required to assist the hybrid heat pump based on dewpoint temperature, relative humidity, and humidity ratio. Preventing frost accumulation on the evaporator is crucial, as it can degrade the coefficient of performance (COP). A novel mathematical and thermodynamic model was implemented and tested using Engineering Equation Solver (EES) under specific initial and boundary conditions. Subsequently, the model was applied to a 1-ton heat pump using R-410A as a working fluid, combining air and assisted source. This hybrid approach allows for a comprehensive analysis of the system's performance under challenging weather, focusing on avoiding freezing. The results showed that the air-source heat pump (ASHP) had an annual energy consumption of 3,564 kWh, whereas the hybrid-source heat pump (HSHP) consumed 2272 kWh with an annual defrosting thermal load of 961 kWh. Integrating an electrical coil in the hybrid system led to a 9.3% reduction in annual energy consumption compared to conventional defrosting methods, significantly enhancing Heat Pump system performance in cold climates.

References

1.
Moodley
,
P.
, and
Trois
,
C.
,
2021
, “2 – Lignocellulosic Biorefineries: The Path Forward,”
Sustainable Biofuels (Applied Biotechnology Reviews)
,
R. C.
Ray
, ed.,
Academic Press
, pp.
21
42
.
2.
Al Nawafah
,
Q.
,
Al Nawafah
,
H.
,
Amano
,
R. S.
, and
Abousabae
,
M.
,
2024
, “Enhanced Thermal Performance in Evacuated Tube Solar Collectors Using Titanium Oxide Nanoparticle: A Computational Fluid Dynamics (CFD) Investigation,”
Proceedings of the ASME 2024 Power Conference
,
Sept. 15–18
,
American Society of Mechanical Engineers
,
Washington, DC
, p.
V001T06A003
.
3.
Maache
,
M.
,
Kada
,
C.
,
Amano
,
R. S.
,
Kumano
,
H.
,
Selim
,
O. M.
, and
Kada
,
K.
,
2024
, “
Experimental and Mathematical Investigation of Thermochemical Conversion for Horse Manure
,”
ASME J. Energy Resour. Technol.
,
146
(
12
), p.
121701
.
4.
Chou
,
C.-H.
,
Ngo
,
S. L.
, and
Tran
,
P. P.
,
2023
, “
Renewable Energy Integration for Sustainable Economic Growth: Insights and Challenges via Bibliometric Analysis
,”
Sustainability
,
15
(
20
), p.
15030
.
5.
Gielen
,
D.
,
Boshell
,
F.
,
Saygin
,
D.
,
Bazilian
,
M. D.
,
Wagner
,
N.
, and
Gorini
,
R.
,
2019
, “
The Role of Renewable Energy in the Global Energy Transformation
,”
Energy Strategy Rev.
,
24
, pp.
38
50
.
6.
Stryi-Hipp
,
G.
,
2016
, “1 – Introduction to Renewable Heating and Cooling,”
Renewable Heating and Cooling
,
G.
Stryi-Hipp
, ed.,
Woodhead Publishing
, pp.
1
5
.
7.
Jaradat
,
M.
,
Albatayneh
,
A.
,
Alsotary
,
O.
,
Hammad
,
R.
,
Juaidi
,
A.
, and
Manzano-Agugliaro
,
F.
,
2023
, “
Water Harvesting System in Greenhouses With Liquid Desiccant Technology
,”
J. Cleaner Prod.
,
414
, p.
137587
.
8.
Gond
,
S.
,
Krishnan
,
N.
, and
Kumar
,
K. R.
,
2023
, “
Forecasting of Thermal Energy Demand for Various Process Industries Using Machine Learning Techniques
,”
Int. J. Energy Clean Environ.
,
26
(
1
), pp.
41
66
.
9.
Jain
,
A.
, and
Gupta
,
P.
,
2024
, “
Evaluation of Waste Heat Recovery Systems for Industrial Decarbonization
,”
Int. J. Energy Clean Environ.
,
25
(
8
), pp.
1
14
.
10.
Sen
,
S.
, and
Ganguly
,
S.
,
2017
, “
Opportunities, Barriers and Issues With Renewable Energy Development – A Discussion
,”
Renewable Sustainable Energy Rev.
,
69
, pp.
1170
1181
.
11.
Chesser
,
M.
,
Lyons
,
P.
,
O'Reilly
,
P.
, and
Carroll
,
P.
,
2021
, “
Air Source Heat Pump In-Situ Performance
,”
Energy Build.
,
251
,
111365
.
12.
Wang
,
X.
,
Xia
,
L.
,
Bales
,
C.
,
Zhang
,
X.
,
Copertaro
,
B.
,
Pan
,
S.
, and
Wu
,
J.
,
2020
, “
A Systematic Review of Recent Air Source Heat Pump (ASHP) Systems Assisted by Solar Thermal, Photovoltaic and Photovoltaic/Thermal Sources
,”
Renewable Energy
,
146
, pp.
2472
2487
.
13.
Bae
,
S.
, and
Nam
,
Y.
,
2021
, “
Comparison Between Experiment and Simulation for the Development of a Tri-Generation System Using Photovoltaic-Thermal and Ground Source Heat Pump
,”
Energy Buildings
,
231
, p.
110623
.
14.
Xiang
,
B.
,
Ji
,
Y.
,
Yuan
,
Y.
,
Wu
,
D.
,
Zeng
,
C.
, and
Zhou
,
J.
,
2021
, “
10-Year Simulation of Photovoltaic-Thermal Road Assisted Ground Source Heat Pump System for Accommodation Building Heating in Expressway Service Area
,”
Sol. Energy
,
215
, pp.
459
472
.
15.
Dannemand
,
M.
,
Sifnaios
,
I.
,
Tian
,
Z.
, and
Furbo
,
S.
,
2020
, “
Simulation and Optimization of a Hybrid Unglazed Solar Photovoltaic-Thermal Collector and Heat Pump System With Two Storage Tanks
,”
Energy Convers. Manage.
,
206
, p.
112429
.
16.
Wu
,
D.
,
Yan
,
H.
,
Hu
,
B.
, and
Wang
,
R.
,
2019
, “
Modeling and Simulation on a Water Vapor High Temperature Heat Pump System
,”
Energy
,
168
, pp.
1063
1072
.
17.
Langley
,
B.
,
2001
,
Heat Pump Technology
, 3rd ed.,
Pearson Education
,
Upper Saddle River, NJ
, pp.
1
440
.
18.
Huang
,
D.
,
Li
,
Q.
, and
Yuan
,
X.
,
2009
, “
Comparison Between Hot-Gas Bypass Defrosting and Reverse-Cycle Defrosting Methods on an Air-to-Water Heat Pump
,”
Appl. Energy
,
86
(
9
), pp.
1697
1703
.
19.
Mengjie
,
S.
,
Rui
,
Y.
,
Lijun
,
X.
, and
Huimin
,
W.
,
2017
, “
Frost Layer Thickness Measurement and Calculation: A Short Review
,”
Energy Procedia
,
142
, pp.
3812
3819
.
20.
Milev
,
G.
,
Al-Habaibeh
,
A.
,
Fanshawe
,
S.
, and
Siena
,
F. L.
,
2023
, “
Investigating the Effect of the Defrost Cycles of Air-Source Heat Pumps on Their Electricity Demand in Residential Buildings
,”
Energy Build.
,
300
, p.
113656
.
21.
Payne
,
V.
, and
O'Neal
,
D. L.
,
1995
, “
Defrost Cycle Performance for an Air-Source Heat Pump With a Scroll and a Reciprocating Compressor
,”
Int. J. Refrig.
,
18
(
2
), pp.
107
112
.
22.
Wei
,
W.
,
Ni
,
L.
,
Wang
,
W.
, and
Yao
,
Y.
,
2020
, “
Experimental and Theoretical Investigation on Defrosting Characteristics of a Multi-Split Air Source Heat Pump With Vapor Injection
,”
Energy Build.
,
217
, p.
109938
.
23.
Song
,
M.
,
Xie
,
G.
,
Pekař
,
L.
,
Mao
,
N.
, and
Qu
,
M.
,
2020
, “
A Modeling Study on the Revere Cycle Defrosting of an Air Source Heat Pump With the Melted Frost Downwards Flowing Away and Local Drainage
,”
Energy Buildings
,
226
, p.
110257
.
24.
Wang
,
Y.
,
Ye
,
Z.
,
Song
,
Y.
,
Yin
,
X.
, and
Cao
,
F.
,
2021
, “
Experimental Analysis of Reverse Cycle Defrosting and Control Strategy Optimization for Trans-Critical Carbon Dioxide Heat Pump Water Heater
,”
Appl. Therm. Eng.
,
183
, p.
116213
.
25.
Chung
,
Y.
,
Na
,
S.-I.
,
Yoo
,
J. W.
, and
Kim
,
M. S.
,
2021
, “
A Determination Method of Defrosting Start Time With Frost Accumulation Amount Tracking in air Source Heat Pump Systems
,”
Appl. Therm. Eng.
,
184
, p.
116405
.
26.
Self
,
S. J.
,
Reddy
,
B. V.
, and
Rosen
,
M. A.
,
2013
, “
Geothermal Heat Pump Systems: Status Review and Comparison With Other Heating Options
,”
Appl. Energy
,
101
, pp.
341
348
.
27.
Imal
,
M.
,
Yılmaz
,
K.
, and
Pınarbaşı
,
A.
,
2015
, “
Energy Efficiency Evaluation and Economic Feasibility Analysis of a Geothermal Heating and Cooling System With a Vapor-Compression Chiller System
,”
Sustainability
,
7
(
9
), pp.
12926
12946
.
28.
Yi
,
M.
,
Hongxing
,
Y.
, and
Zhaohong
,
F.
,
2008
, “
Study on Hybrid Ground-Coupled Heat Pump Systems
,”
Energy Build.
,
40
(
11
), pp.
2028
2036
.
29.
.
Mesquita
,
L.
,
McClenahan
,
D.
,
Thornton
,
J.
,
Carriere
,
J.
, and
Wong
,
B.
,
2017
, “
Drake Landing Solar Community: 10 Years of Operation
,”
Proceedings of SWC2017/SHC2017
,
Abu Dhabi
,
Oct. 29–Nov. 2
, pp.
1
12
.
30.
Chaturvedi
,
S. K.
,
Chen
,
D. T.
, and
Kheireddine
,
A.
,
1998
, “
Thermal Performance of a Variable Capacity Direct Expansion Solar-Assisted Heat Pump
,”
Energy Convers. Manage.
,
39
(
3–4
), pp.
181
191
.
31.
Kim
,
Y.-J.
,
Yang
,
L.
,
Entchev
,
E.
,
Cho
,
S.
,
Kang
,
E.-C.
, and
Lee
,
E.-J.
,
2022
, “
Hybrid Solar Geothermal Heat Pump System Model Demonstration Study
,”
Front. Energy Res.
,
9
, p.
778501
.
32.
Aravind
,
K. U.
,
Mekala
NM
,
Muthuraju
NP
,
Soni
NB
,
Al-Ammar
EA
,
Seikh
AH
, et al
,
2022
, “
Thermal Storage for the Analysis of Hybrid Energy Systems Based on Geothermal and Solar Power
,”
Int. J. Photoenergy
,
2022
, pp.
1
13
.
33.
Palomba
,
V.
,
Bonanno
A
,
Brunaccini
G
,
Aloisio
D
,
Sergi
F
,
Dino
GE
, et al
,
2021
, “
Hybrid Cascade Heat Pump and Thermal-Electric Energy Storage System for Residential Buildings: Experimental Testing and Performance Analysis
,”
Energies
,
14
(
9
), p.
2580
.
34.
Singh
,
R.
, and
Sharma
,
P.
,
2024
, “
Experimental Analysis of Heat Transfer and Thermal Performance of Parabolic Type Solar Collector With Ribbed Surface Texture for Clean Energy Extraction
,”
Int. J. Energy Clean Environ.
,
25
(
5
), pp.
1
17
.
35.
Bennani
,
M.
, and
Bouzidi
,
M.
,
2025
, “
Assessing the Thermal Efficiency of Horizontal Air–Ground Heat Exchangers for Heating and Cooling Buildings in the Northwestern Algeria Region
,”
Int. J. Energy Clean Environ.
,
26
(
2
), pp.
51
75
.
36.
Cengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2014
,
Heat and Mass Transfer: Fundamentals and Applications
, 5th ed.,
McGraw-Hill Professional
,
New York
.
37.
Çengel
,
Y. A.
, and
Boles
,
M. A.
,
2015
,
Thermodynamics: An Engineering Approach
, 8th ed.,
McGraw-Hill Education
,
New York
.
38.
Tashtoush
,
B.
, and
Alshoubaki
,
A. Y.
,
2024
, “
Solar-Off-Grid Atmospheric Water Harvesting System: Performance Analysis and Evaluation in Diverse Climate Conditions
,”
Sci. Total Environ.
,
906
, p.
167804
.
39.
Lawrence
,
M. G.
,
Feb. 2005
, “
The Relationship Between Relative Humidity and the Dewpoint Temperature in Moist Air: A Simple Conversion and Applications
,”
Bull. Am. Meteorol. Soc.
,
86
(
2
), pp.
225
234
.
You do not currently have access to this content.