Abstract

To improve the utilization of solar irradiance by a bifacial photovoltaic (PV) flat single-axis tracking system under complex weather conditions, a dynamic optimization model for bifacial PV modules, a hybrid tracking algorithm was developed. Scattering coefficients are defined to differentiate weather conditions consistently so as to select different algorithms for tracking. The sun's position is tracked by using the visual sun trajectory model on sunny days, while the maximum sum of irradiance of bifacial modules is used as the tracking angle setting principle for high scattering weather. A month-long controlled field experiment was conducted at a PV plant in Ningxia. Data under typical cloudy and overcast conditions were selected to analyze and verify whether the proposed model can improve the power generation efficiency of the planar single-axis tracking system. The experiment results show that the tracking system using the all-weather dynamic optimization model for bifacial modules has an irradiance gain of 8.174% and 4.81%, and a daily power generation gain is 10.529% and 6.20%, respectively, under typical cloudy and overcast conditions. This demonstrates that the hybrid tracking model proposed in this article can improve the power generation of the bifacial flat single-axis tracking system under complex weather.

References

1.
Aghahosseini
,
A.
,
Solomon
,
A. A.
,
Breyer
,
C.
,
Pregger
,
T.
,
Simon
,
S.
,
Strachan
,
P.
, and
Jäger-Waldau
,
A.
,
2023
, “
Energy System Transition Pathways to Meet the Global Electricity Demand for Ambitious Climate Targets and Cost Competitiveness
,”
Appl. Energy
,
331
, p.
120401
.
2.
Huang
,
Z.
,
Xu
,
X.
, and
Li
,
H.
,
2021
, “
Development of Double Photoelectric Solar Tracking Controller for Photovoltaic Solar Thermal Integrated Machine
,”
Trans. Chin. Soc. Agric. Eng.
,
37
(
8
), pp.
236
241
. :
3.
Gönül
,
Ö
,
Yazar
,
F.
,
Duman
,
A. C.
, and
Güler
,
Ö
,
2022
, “
A Comparative Techno-Economic Assessment of Manually Adjustable Tilt Mechanisms and Automatic Solar Trackers for Behind-the-Meter PV Applications
,”
Renewable Sustainable Energy Rev.
,
168
, p.
112770
.
4.
Lu
,
W.
, and
Ajay
,
P.
,
2024
, “
Solar PV Tracking System Using Arithmetic Optimization With Dual Axis and Sensor
,”
Meas.: Sens.
,
33
, p.
101089
.
5.
El Hammoumi
,
A.
,
Chtita
,
S.
,
Motahhir
,
S.
, and
El Ghzizal
,
A.
,
2022
, “
Solar PV Energy: From Material to Use, and the Most Commonly Used Techniques to Maximize the Power Output of PV Systems: A Focus on Solar Trackers and Floating Solar Panels
.
Energy Rep.
,
8
, pp.
11992
12010
.
6.
López
,
M.
,
2024
, “
Detection of Tracker Misalignments and Estimation of Cross-Axis Slope in Photovoltaic Plants
,”
Sol. Energy
,
272
, p.
112490
.
7.
Bharathi
,
M. L.
,
Bhatt
,
V.
,
Kumar
,
V. V. R.
,
Sharma
,
R. J.
,
Hemavathi
,
S.
,
Pant
,
B.
,
Arani
,
R. P.
,
Sathish
,
T.
,
Mohanavel
,
V.
, et al
,
2022
, “
Developing a Dual Axis Photoelectric Tracking Module Using a Multi Quadrant Photoelectric Device
,”
Energy Rep.
,
8
, pp.
1426
1439
.
8.
Kuttybay
,
N.
,
Saymbetov
,
A.
,
Mekhilef
,
S.
,
Nurgaliyev
,
M.
,
Tukymbekov
,
D.
,
Dosymbetova
,
G.
,
Meiirkhanov
,
A.
, and
Svanbayev
,
Y.
,
2020
, “
Optimized Single-Axis Schedule Solar Tracker in Different Weather Conditions
,”
Energies
,
13
(
19)
, p.
5226
.
9.
Mamodiya
,
U.
, and
Tiwari
,
N.
,
2023
, “
Dual-Axis Solar Tracking System With Different Control Strategies for Improved Energy Efficiency
,”
Comput. Electr. Eng.
,
111
, p.
108920
.
10.
Muñoz-Cerón
,
E.
,
Moreno-Buesa
,
S.
,
Leloux
,
J.
,
Aguilera
,
J.
, and
Moser
,
D.
,
2024
, “
Evaluation of the Bifaciality Coefficient of Bifacial Photovoltaic Modules Under Real Operating Conditions
,”
J. Cleaner Prod.
,
434
, p.
139807
.
11.
Zsiborács
,
H.
,
Pintér
,
G.
,
Vincze
,
A.
, and
Hegedűsné Baranyai
,
N.
,
2022
, “
A Control Process for Active Solar-Tracking Systems for Photovoltaic Technology and the Circuit Layout Necessary for the Implementation of the Method
,”
Sensors
,
22
(
7
), p.
2564
.
12.
Angulo-Calderón
,
M.
,
Salgado-Tránsito
,
I.
,
Trejo-Zúñiga
,
I.
,
Paredes-Orta
,
C.
,
Kesthkar
,
S.
, and
Díaz-Ponce
,
A.
,
2022
, “
Development and Accuracy Assessment of a High-Precision Dual-Axis Pre-Commercial Solar Tracker for Concentrating Photovoltaic Modules
,”
Appl. Sci.
,
12
(
5
), p.
2625
.
13.
Kelly
,
N. A.
, and
Gibson
,
T. L.
,
2009
, “
Improved Photovoltaic Energy Output for Cloudy Conditions With a Solar Tracking System
,”
Sol. Energy
,
83
(
11
), pp.
2092
2102
.
14.
Quesada
,
G.
,
Guillon
,
L.
,
Rousse
,
D. R.
,
Mehrtash
,
M.
,
Dutil
,
Y.
, and
Paradis
,
P.-L.
,
2015
, “
Tracking Strategy for Photovoltaic Solar Systems in High Latitudes
,”
Energy Convers. Manage.
,
103
, pp.
147
156
.
15.
Ramaneti
,
K.
,
Kakani
,
P.
, and
Prakash
,
S.
,
2021
, “
Improving Solar Panel Efficiency by Solar Tracking and Tilt Angle Optimization With Deep Learning
,”
2021 Fifth International Conference on Smart Grid and Smart Cities
,
Tokyo, Japan
,
June 18–20
, pp.
102
106
16.
Hu
,
B.
,
Wu
,
J.
,
Li
,
P.
,
Sun
,
W.
, and
Xiao
,
J.
,
2022
, “
Calculating the Shading Reduction Coefficient of Photovoltaic System Efficiency Using the Anisotropic Sky Scattering Model
,”
Global Energy Interconnect.
,
5
(
4
), pp.
375
384
.
17.
Jin
,
C.
,
Jiafei
,
Q.
,
Bingbing
,
W.
, and
Zhanwei
,
L.
,
2023
, “
Effect of Scattered Radiation on Photovoltaic Power Generation System
,”
Clean Coal Technol.
,
29
(
S2
), pp.
291
298
.
18.
Wang
,
L.
,
Chen
,
X.
,
Fang
,
J.
,
Xia
,
H.
,
Liu
,
Q.
,
Li
,
Q.
, and
Bai
,
L.
,
2023
, “
Solar Hybrid Tracking System Under Complex Weather Conditions and Control Criterion
,”
Trans. Chin Soc. Agric. Eng. (Trans. CSAE)
,
39
(
5
), pp.
156
165
.
You do not currently have access to this content.