Abstract

The use of phase change materials (PCMs) has gained prominence due to their exceptional thermal energy storage capabilities, aiding in CO2 emission reduction and promoting sustainable energy. This study investigates the impact of dispersing nano-additives into PCMs within energy storage systems equipped with innovative tree-shaped fins to improve thermal performance. Four tree-shaped fin geometries were analyzed for their ability to enhance heat dissipation. The fins optimize heat conduction by increasing the heat transfer area, significantly reducing PCM melting time. Copper oxide (CuO) nanoparticles, added at concentrations of 0–6%, further enhance the thermal performance. Results show that extending fins outward significantly improves heat transfer, achieving an 81.2% reduction in melting time. At 6% nanoparticle concentration, the melting time is further reduced by 18% compared to systems without additives.

References

1.
Gong
,
C.
, and
Zaehle
,
S.
,
2024
, “
How Nitrogen Compounds in Fertilizers and Fossil-Fuel Emissions Affect Global Warming
,”
Nature
.
2.
Rößler
,
E.
,
Schmeckel
,
T.
,
Kesselheim
,
U.
, and
Arning
,
K.
,
2024
, “
Driving Towards Sustainability: Exploring Risk Perceptions of Fossil Fuels, E-Fuels, and Electric Drives in Individual Transport
,”
Front. Energy Res.
,
12
, p.
1415430
.
3.
Wei
,
W.
,
Yang
,
S.
,
Ma
,
L.
,
Xie
,
B.
,
Zhou
,
J.
,
Wang
,
M.
,
Wei
,
X.
, and
Chen
,
D.
,
2024
, “
Spatiotemporal Variations of Fossil Fuel CO2 Emissions in China: A Sectoral Allocation Approach Based on Multi-source Data
,”
Environ. Pollut.
,
360
, p.
124589
.
4.
Pickering
,
B.
,
Lombardi
,
F.
, and
Pfenninger
,
S.
,
2022
, “
Diversity of Options to Eliminate Fossil Fuels and Reach Carbon Neutrality Across the Entire European Energy System
,”
Joule
,
6
(
6
), pp.
1253
1276
.
5.
Zissler
,
R.
,
2022
, “
During the Energy Crisis Renewable Energy Grows, Fossils and Nuclear Energy Decrease
,”
Renew. Energy Law Policy Rev.
,
11
(
1
), pp.
28
31
.
6.
Tagle-Salazar
,
P. D.
,
Cabeza
,
L. F.
, and
Prieto
,
C.
,
2024
, “
Transient Performance Modelling of Solar Tower Power Plants With Molten Salt Thermal Energy Storage Systems
,”
J. Energy Storage
,
97
, p.
112793
.
7.
Sun
,
J.
,
2024
, “
Self-Operation and Low-Carbon Scheduling Optimization of Solar Thermal Power Plants With Thermal Storage Systems
,”
Energy Inf.
,
7
(
1
), p.
30
.
8.
Guo
,
P.
,
Zhang
,
D.
,
Sheng
,
N.
,
Rao
,
Z.
, and
Zhu
,
C.
,
2024
, “
Honeycomb-Like Porous Copper With Pleated Surface for Supporting Phase Change Material With Enhanced Thermal Conductivity and Solar Thermal Storage Performance
,”
J. Energy Storage
,
80
, p.
110365
.
9.
Li
,
W. Q.
,
Cao
,
K.
,
Song
,
Q. L.
,
Zhu
,
P. F.
, and
Ba
,
Y.
,
2023
, “
Enhancements of Heat Transfer and Thermoelectric Performances Using Finned Heat-Pipe Array
,”
Appl. Therm. Eng.
,
230
, p.
120682
.
10.
Tamraparni
,
A.
,
Hoe
,
A.
,
Deckard
,
M.
,
Zhang
,
C.
,
Malone
,
N.
,
Elwany
,
A.
,
Shamberger
,
P. J.
, and
Felts
,
J. R.
,
2023
, “
Design and Optimization of Composite Phase Change Material for Cylindrical Thermal Energy Storage
,”
Int. J. Heat Mass Transfer
,
208
, p.
123995
.
11.
Mo
,
S.
,
Xiao
,
B.
,
Li
,
J.
,
Jia
,
L.
, and
Chen
,
Y.
,
2024
, “
LiNO3/NaCl Nanocapsules With High Thermal Properties for Medium-Temperature Thermal Energy Storage
,”
J. Energy Storage
,
83
, p.
110672
.
12.
Teja
,
P. N. S.
,
Gugulothu
,
S. K.
,
Reddy
,
P. D. S.
,
Deepanraj
,
B.
, and
Sundar
,
L. S.
,
2023
, “
Computational Investigation of the Influencing Parameters on the Melting of Phase Change Material in a Square Enclosure With Built In Fin and Al2O3 Nanoparticles
,”
Appl. Therm. Eng.
,
232
, p.
120942
.
13.
Bian
,
Z.
,
Hou
,
F.
,
Chen
,
J.
, and
Wang
,
H.
,
2024
, “
Numerical Analysis on the Effect of Graded Porosity in Closed-Cell Metal Foams/PCM Composites
,”
Case Stud. Therm. Eng.
,
55
, p.
104145
.
14.
Zhang
,
S.
,
Pu
,
L.
,
Mancin
,
S.
,
Ma
,
Z.
, and
Xu
,
L.
,
2022
, “
Experimental Study on Heat Transfer Characteristics of Metal Foam/Paraffin Composite PCMs in Large Cavities: Effects of Material Types and Heating Configurations
,”
Appl. Energy
,
325
, p.
119790
.
15.
Jaberi
,
A.
,
Hossainpour
,
S.
, and
Kiyoumarsioskouei
,
A.
,
2024
, “
The Impact of Utilizing Porous Fins on the Performance of PCM Melting Process in a Horizontal Latent Heat Thermal Energy Storage
,”
J. Energy Storage
,
97
, p.
112893
.
16.
Xu
,
Y.
,
He
,
C.
,
Chen
,
Y.
,
Sun
,
Y.
,
Yin
,
H.
, and
Zheng
,
Z. J.
,
2023
, “
Experimental and Numerical Study on the Effect of the Intelligent Memory Metal Fin on the Melting and Solidification Process of PCM
,”
Renew. Energy
,
218
, p.
119366
.
17.
Ao
,
C.
,
Yan
,
S.
,
Hu
,
W.
,
Zhao
,
L.
, and
Wu
,
Y.
,
2022
, “
Heat Transfer Analysis of a PCM in Shell-and-Tube Thermal Energy Storage Unit With Different V-Shaped Fin Structures
,”
Appl. Therm. Eng.
,
216
, p.
119079
.
18.
Li
,
H.
,
Zhuang
,
Y.
,
Feng
,
J. C.
, and
Huang
,
S. M.
,
2023
, “
Experimental Study on the Solidification and Melting Performances of Magnetic NEPCMs Composited With Optimized Filling Metal Foam in a Uniform Magnetic Field
,”
Sol. Energy
,
263
, p.
111927
.
19.
Fan
,
Y.
,
Zhang
,
C.
,
Yu
,
M.
,
Zhang
,
X.
, and
Zhao
,
Y.
,
2021
, “
Performance Enhancement of Latent Thermal Energy System Under Alternating Magnetic Field
,”
Appl. Therm. Eng.
,
188
, p.
116586
.
20.
Chibani
,
A.
,
Dehane
,
A.
, and
Merouani
,
S.
,
2023
, “
The Sono-PCM Reactors: A New Approach for Recovering the Heat Dissipated From Ultrasonic Reactors Using a Phase Change Material
,”
Int. J. Heat Mass Transfer
,
215
, p.
124505
.
21.
Guardia
,
C.
,
Barluenga
,
G.
, and
Palomar
,
I.
,
2022
, “
Evaluation of the Energy Storage Capacity of Phase Change Material Cement-Lime Mortars by Using Heat Flux Meters and Ultrasonic Pulse Transmission
,”
J. Energy Storage
,
50
, p.
104674
.
22.
Ren
,
F.
,
Li
,
Q.
, and
Wang
,
P.
,
2024
, “
Investigation and Optimization on a Y-Shaped Fins for Phase Change Heat Storage by Rotational Mechanism
,”
J. Energy Storage
,
94
, p.
112436
.
23.
Yang
,
C.
,
Zheng
,
Z. J.
,
Cai
,
X.
, and
Xu
,
Y.
,
2022
, “
Experimental Study on the Effect of Rotation on Melting Performance of Shell-and-Tube Latent Heat Thermal Energy Storage Unit
,”
Appl. Therm. Eng.
,
215
, p.
118877
.
24.
Hossainpour
,
S.
,
2022
, “
A Numerical Investigation on the Finned Storage Rotation Effect on the Phase Change Material Melting Process of Latent Heat Thermal Energy Storage System
,”
J. Energy Storage
,
55
, p.
105461
.
25.
Yu
,
X.
,
Jiang
,
R.
,
Li
,
Z.
,
Qian
,
G.
,
Wang
,
B.
,
Wang
,
L.
, and
Huang
,
R.
,
2023
, “
Synergistic Improvement of Melting Rate and Heat Storage Capacity by a Rotation-Based Method for Shell-and-Tube Latent Thermal Energy Storage
,”
Appl. Therm. Eng.
,
219
, p.
119480
.
26.
Hakamian
,
K.
,
Anderson
,
K. R.
,
Shafahi
,
M.
, and
Lakeh
,
R. B.
,
2019
, “
Thermal Design and Analysis of a Solid-State Grid-Tied Thermal Energy Storage for Hybrid Compressed Air Energy Storage Systems
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
061903
.
27.
Oliver
,
M. C.
,
Shah
,
M.
,
Martinek
,
J.
,
Nithyanandam
,
K.
,
Ma
,
Z.
, and
Martin
,
M. J.
,
2023
, “
Exploring the Limits of Empirical Correlations for the Design of Energy Systems With Complex Fluids: Liquid Sulfur Thermal Energy Storage as a Case Study
,”
ASME J. Energy Resour. Technol.
,
145
(
12
), p.
121704
.
28.
Karasu
,
H.
, and
Dincer
,
I.
,
2018
, “
Analysis and Efficiency Assessment of Direct Conversion of Wind Energy Into Heat Using Electromagnetic Induction and Thermal Energy Storage
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
071201
.
29.
Chekifi
,
T.
,
Boukraa
,
M.
, and
Benmoussa
,
A.
,
2024
, “
Artificial Intelligence for Thermal Energy Storage Enhancement: A Comprehensive Review
,”
ASME J. Energy Resour. Technol.
,
146
(
6
), p.
060802
.
30.
Sulzgruber
,
V.
,
Unterlass
,
M.
,
Cavalli
,
T.
, and
Walter
,
H.
,
2022
, “
Micro Encapsulated Phase Change Material for the Application in Thermal Energy Storage
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p.
052001
.
31.
Boulaktout
,
N.
,
Mezaache
,
E. H.
,
Teggar
,
M.
,
Arıcı
,
M.
,
Ismail
,
K. A.
, and
Yıldız
,
Ç
,
2021
, “
Effect of Fin Orientation on Melting Process in Horizontal Double Pipe Thermal Energy Storage Systems
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
070904
.
32.
Hu
,
Z.
,
Jiang
,
S.
,
Sun
,
Z.
, and
Li
,
J.
,
2024
, “
Numerical Simulation of Fin Arrangements on the Melting Process of PCM in a Rectangular Unit
,”
Renew. Energy
,
220
, p.
119677
.
33.
Bhattacharjee
,
P.
,
Nath
,
S.
,
Bhanja
,
D.
, and
Tamuli
,
B. R.
,
2023
, “
A Comparative Study of Melting Behaviour of PCM in a Square Enclosure Having Rectangular Fin and T-Shaped Fin, Placed in Vertical and Horizontal Direction: A Numerical Approach
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
237
(
24
), pp.
6042
6056
.
34.
Rawat
,
P.
,
Goyal
,
A.
, and
Sherwani
,
A. F.
,
2023
, “
A Comparative Numerical Study About the Impact of Rectangular and T Shaped Fins on Melting of PCM in a Rectangular Enclosure
,”
Appl. Therm. Eng.
,
228
, p.
120461
.
35.
Yan
,
P.
,
Fan
,
W.
,
Yang
,
Y.
,
Ding
,
H.
,
Arshad
,
A.
, and
Wen
,
C.
,
2022
, “
Performance Enhancement of Phase Change Materials in Triplex-Tube Latent Heat Energy Storage System Using Novel Fin Configurations
,”
Appl. Energy
,
327
, p.
120064
.
36.
Yıldız
,
Ç.
,
Arıcı
,
M.
,
Nižetić
,
S.
, and
Shahsavar
,
A.
,
2020
, “
Numerical Investigation of Natural Convection Behavior of Molten PCM in an Enclosure Having Rectangular and Tree-Like Branching Fins
,”
Energy
,
207
, p.
118223
.
37.
ELSihy
,
E. S.
,
Cai
,
C.
,
Li
,
Z.
,
Du
,
X.
, and
Wang
,
Z.
,
2024
, “
Performance Investigation on the Cascaded Packed Bed Thermal Energy Storage System With Encapsulated Nano-Enhanced Phase Change Materials for High-Temperature Applications
,”
Energy
,
293
, p.
130554
.
38.
Milyani
,
A. H.
,
Abu-Hamdeh
,
N. H.
,
Azhari
,
A. A.
,
Al-Bonsrulah
,
H. A.
, and
Alghawli
,
A. S.
,
2023
, “
Acceleration the Solidification Process of Cold-Thermal Storage/Nanoparticles Using Finned Container: A Numerical Study
,”
Case Stud. Therm. Eng.
,
51
, p.
103647
.
39.
Rashid
,
F. L.
,
Eisapour
,
M.
,
Ibrahem
,
R. K.
,
Talebizadehsardari
,
P.
,
Hosseinzadeh
,
K.
,
Abbas
,
M. H.
,
Mohammed
,
H. I.
,
Yvaz
,
A.
, and
Chen
,
Z.
,
2023
, “
Solidification Enhancement of Phase Change Materials Using Fins and Nanoparticles in a Triplex-Tube Thermal Energy Storage Unit: Recent Advances and Development
,”
Int. Commun. Heat Mass Transfer
,
147
, p.
106922
.
40.
Chen
,
C.
,
Diao
,
Y.
,
Zhao
,
Y.
,
Wang
,
Z.
,
Han
,
Y.
,
Wang
,
Z.
,
Liu
,
Y.
,
Fang
,
D.
, and
Zhu
,
T.
,
2023
, “
Thermal Performance of Cold Thermal Energy Storage System With Fin and Fin–Foam Structures
,”
Appl. Therm. Eng.
,
228
, p.
120459
.
41.
Asker
,
M.
,
Al-Rawi
,
M.
, and
Genceli
,
H.
,
2023
, “
Numerical Analysis of Phase Change Material Filled With Metal Foam Inside a Cylindrical Capsule
,”
Energy Storage
,
5
(
8
), p.
e479
.
42.
Liu
,
G.
,
Xiao
,
T.
,
Wei
,
P.
,
Meng
,
X.
,
Yang
,
X.
,
Yan
,
J.
, and
He
,
Y.-L.
,
2023
, “
Experimental and Numerical Studies on Melting/Solidification of PCM in a Horizontal Tank Filled With Graded Metal Foam
,”
Sol. Energy Mater. Sol. Cells
,
250
, p.
112092
.
43.
Shaik
,
S. A.
,
Nigam
,
P. K.
, and
Gugulothu
,
S. K.
,
2024
, “
Optimization of Thermal Energy Storage in Phase Change Material/Nano Additive Heat Exchangers Utilizing Elliptical and Circular Tubes with and Without Fins
,”
Renewable Energy Focus
,
51
, p.
100654
.
44.
Selimefendigil
,
F.
,
Ghachem
,
K.
,
Albalawi
,
H.
,
Alshammari
,
B. M.
,
Labidi
,
T.
, and
Kolsi
,
L.
,
2023
, “
Thermal and Phase Change Process of Nanofluid in a Wavy PCM Installed Triangular Elastic Walled Ventilated Enclosure Under Magnetic Field
,”
Case Stud. Therm. Eng.
,
49
, p.
103169
.
45.
Dezfouli
,
A. H. M.
,
Majidi
,
S.
, and
Jahangiri
,
A.
,
2023
, “
Magnetocalorically Accelerated Charging of Latent Thermal Energy Storage Systems
,”
Int. Commun. Heat Mass Transfer
,
145
, p.
106850
.
46.
Rabienataj Darzi
,
A. A.
, and
Mousavi
,
S. M.
,
2023
, “
Enhancement of Charging and Discharging of Phase Change Material in Annular Thermal Energy Storage Unit by Applying Magnetic Field
,”
Numer. Heat Transfer, Part A: Appl.
,
83
(
6
), pp.
609
625
.
47.
Khanmohammadi
,
S.
,
Azimi
,
N.
,
Sharifzadeh
,
E.
,
Rahimi
,
M.
, and
Azimi
,
P.
,
2023
, “
An Experimental Study to Improve Cooling on a Hot Plate Using Phase Change Materials and High-Frequency Ultrasound
,”
J. Energy Storage
,
72
, p.
107930
.
48.
Huang
,
X.
,
Li
,
F.
,
Li
,
Y.
,
Gao
,
X.
,
Yang
,
X.
, and
Sundén
,
B.
,
2023
, “
Investigation and Optimization on Melting Performance of a Triplex-Tube Heat Storage Tank by Rotational Mechanism
,”
Int. J. Heat Mass Transfer
,
205
, p.
123892
.
49.
Qasem
,
N. A.A.
,
Abderrahmane
,
A.
,
Belazreg
,
A.
,
Younis
,
O.
,
Homod
,
R. Z.
,
Oreijah
,
M.
, and
Guedri
,
K.
,
2024
, “
Influence of Tree-Shaped Fins to Enhance Thermal Storage Units
,”
Int. Commun. Heat Mass Transfer
,
151
, p.
107220
.
50.
Jegadheeswaran
,
S.
, and
Sundaramahalingam
,
A.
,
2023
, “
Experimental Investigations of the Effect of Ultrasonic Waves on the Thermal Performance of Nanoparticles Embedded Phase Change Material
,”
Int. J. Thermophys.
,
44
(
1
), p.
8
.
51.
Yang
,
C.
,
Xu
,
Y.
,
Xu
,
X. R.
,
Bake
,
M.
,
Wu
,
C. M.
,
Li
,
Y. R.
, and
Yu
,
J. J.
,
2024
, “
Melting Performance Analysis of Finned Metal Foam Thermal Energy Storage Tube Under Steady Rotation
,”
Int. J. Heat Mass Transfer
,
226
, p.
125458
.
52.
Yang
,
B.
,
Guo
,
J.
,
Huang
,
X.
,
Li
,
Z.
,
Yang
,
X.
, and
Li
,
M.-J.
,
2024
, “
Evaluation of Variable Rotation on Enhancing Thermal Performance of Phase Change Heat Storage Tank
,”
Int. J. Heat Fluid Flow
,
106
, p.
109328
.
53.
Kumar
,
A.
,
Maurya
,
A.
,
Siddiqui
,
M. I. H.
,
Alnaser
,
I. A.
, and
Ashraf
,
I.
,
2024
, “
Transient Analysis of PCM Discharging in a Rotary Triplex Tube With Wave-Shaped Fins
,”
J. Energy Storage
,
79
, p.
110178
.
You do not currently have access to this content.