Abstract

Given the crucial role of lithium (Li) in clean energy transition through effective decarbonization of various energy sectors, enhancing and diversifying the source of Li is regarded as an urgent priority. Producing Li from formation brines is a promising solution due to their abundant resources and environmental friendlessness to extract. In this study, we focus on Li extraction with an ion-sieve method utilizing Li/aluminum-layered double hydroxide chlorides (Li/Al-LDH), by its significant stability, great scalability, and favorable techno-economic feasibility. In this regard, we set our goal to numerically quantify the adsorption performance of granulated Li/Al-LDH adsorbent for Li+ by quantitatively analyzing the impacts of controlling factors. To achieve the goal, we develop our numerical capability of addressing brine injection, fluid flow, component transport, and adsorption in column chromatography application, based on lattice Boltzmann method (LBM) modeling. To quantify the impact of operational conditions of Li+ adsorption performance with granulated Li/Al-LDH adsorbent, various values of porosity and radius of granule, Li+ concentration in injected brine, and brine injection velocity are considered. From the numerical simulations and coupled local sensitivity analysis, the radius of the adsorbent granule is found to be most influential on the adsorption performance, followed by granule porosity, concentration of Li+ in injected brine, and injection velocity. This study provides the conceptual and essential information on the quantified impact of various operational conditions on Li+ adsorption performance that can be used to optimize the design of Li/Al-LDH adsorbent granule and column chromatography strategy, as achieving the techno-economically feasible Li+ extraction from formation brines.

References

1.
Maisel
,
F.
,
Neef
,
C.
,
Marscheider-Weidemann
,
F.
, and
Nissen
,
N. F.
,
2023
, “
A Forecast on Future Raw Material Demand and Recycling Potential of Lithium-Ion Batteries in Electric Vehicles
,”
Resour. Conserv. Recycl.
,
192
, p.
106920
.
2.
Yang
,
S.
,
Zhang
,
F.
,
Ding
,
H.
,
He
,
P.
, and
Zhou
,
H.
,
2018
, “
Lithium Metal Extraction From Seawater
,”
Joule
,
2
(
9
), pp.
1648
1651
.
3.
Heredia
,
F.
,
Martinez
,
A. L.
, and
Surraco Urtubey
,
V.
,
2020
, “
The Importance of Lithium for Achieving a Low-Carbon Future: Overview of the Lithium Extraction in the ‘Lithium Triangle’
,”
J. Energy Nat. Resour. Law
,
38
(
3
), pp.
213
236
.
4.
Flexer
,
V.
,
Baspineiro
,
C. F.
, and
Galli
,
C. I.
,
2018
, “
Lithium Recovery From Brines: A Vital Raw Material for Green Energies With a Potential Environmental Impact in Its Mining and Processing
,”
Sci. Total Environ.
,
639
, pp.
1188
1204
.
5.
Mojid
,
M. R.
,
Lee
,
K. J.
, and
You
,
J.
,
2024
, “
A Review on Advances in Direct Lithium Extraction From Continental Brines: Ion-Sieve Adsorption and Electrochemical Methods for Varied Mg/Li Ratios
,”
Sustainable Mater. Technol.
,
40
, p.
e00923
.
6.
Meng
,
F.
,
McNeice
,
J.
,
Zadeh
,
S. S.
, and
Ghahreman
,
A.
,
2021
, “
Review of Lithium Production and Recovery From Minerals, Brines, and Lithium-Ion Batteries
,”
Miner. Process. Extr. Metall. Rev.
,
42
(
2
), pp.
123
141
.
7.
Vera
,
M. L.
,
Torres
,
W. R.
,
Galli
,
C. I.
,
Chagnes
,
A.
, and
Flexer
,
V.
,
2023
, “
Environmental Impact of Direct Lithium Extraction From Brines
,”
Nat. Rev. Earth Environ.
,
4
(
3
), pp.
149
165
.
8.
Lee
,
K. J.
,
2022
, “
Potential of Petroleum Source Rock Brines as a New Source of Lithium: Insights From Basin-Scale Modeling and Local Sensitivity Analysis
,”
Energy Rep.
,
8
, pp.
56
68
.
9.
Lee
,
K. J.
,
You
,
J.
,
Gao
,
Y.
, and
Terlier
,
T.
,
2024
, “
Release, Transport, and Accumulation of Lithium in Shale Brines
,”
Fuel
,
356
, p.
129629
.
10.
You
,
J.
, and
Lee
,
K. J.
,
2024
, “
Pore-Scale and Upscaled Investigations of Release and Transport of Lithium in Organic-Rich Shales
,”
Transp. Porous Media
, 151, pp.
813
308
.
11.
Khalil
,
A.
,
Mohammed
,
S.
,
Hashaikeh
,
R.
, and
Hilal
,
N.
,
2022
, “
Lithium Recovery From Brine: Recent Developments and Challenges
,”
Desalination
,
528
, p.
115611
.
12.
Xu
,
W.
,
Liu
,
D.
,
Liu
,
X.
,
Wang
,
D.
,
He
,
L.
, and
Zhao
,
Z.
,
2023
, “
Highly Selective and Efficient Lithium Extraction From Brines by Constructing a Novel Multiple-Crack-Porous LiFePO4/FePO4 Electrode
,”
Desalination
,
546
, p.
116188
.
13.
Zhang
,
Y.
,
Sun
,
W.
,
Xu
,
R.
,
Wang
,
L.
, and
Tang
,
H.
,
2021
, “
Lithium Extraction From Water Lithium Resources Through Green Electrochemical-Battery Approaches: A Comprehensive Review
,”
J. Cleaner Prod.
,
285
, p.
124905
.
14.
Arroyo
,
F.
,
Morillo
,
J.
,
Usero
,
J.
,
Rosado
,
D.
, and
El Bakouri
,
H.
,
2019
, “
Lithium Recovery From Desalination Brines Using Specific Ion-Exchange Resins
,”
Desalination
,
468
, p.
114073
.
15.
Kölbel
,
L.
,
Kölbel
,
T.
,
Herrmann
,
L.
,
Kaymakci
,
E.
,
Ghergut
,
I.
,
Poirel
,
A.
, and
Schneider
,
J.
,
2023
, “
Lithium Extraction From Geothermal Brines in the Upper Rhine Graben: A Case Study of Potential and Current State of the Art
,”
Hydrometallurgy
,
221
, p.
106131
.
16.
Paranthaman
,
M. P.
,
Li
,
L.
,
Luo
,
J.
,
Hoke
,
T.
,
Ucar
,
H.
,
Moyer
,
B. A.
, and
Harrison
,
S.
,
2017
, “
Recovery of Lithium From Geothermal Brine With Lithium–Aluminum Layered Double Hydroxide Chloride Sorbents
,”
Environ. Sci. Technol.
,
51
(
22
), pp.
13481
13486
.
17.
Chen
,
J.
,
Du
,
J.
,
Yu
,
J.
, and
Lin
,
S.
,
2023
, “
A One-Step Regeneration Method In-Situ for Deactivated Aluminum-Based Lithium Adsorbent Used in High Mg2+/Li+ Brines
,”
Desalination
,
554
, p.
116491
.
18.
Chen
,
J.
,
Lian
,
C.
,
Yu
,
J.
, and
Lin
,
S.
,
2024
, “
A Directional Growth Strategy for High Layer Charge Li/Al-LDHs to Reinforce Li+ Extraction in Low-Grade Salt Lake Brines
,”
AIChE J.
,
70
(
2
), p.
e18280
.
19.
Zhong
,
J.
,
Lin
,
S.
, and
Yu
,
J.
,
2021
, “
Lithium Recovery From Ultrahigh Mg2+/Li+ Ratio Brine Using a Novel Granulated Li/Al-LDHs Adsorbent
,”
Sep. Purif. Technol.
,
256
, p.
117780
.
20.
Zhao
,
C.
,
Dai
,
L.
,
Tang
,
G.
,
Qu
,
Z.
, and
Li
,
Z.
,
2010
, “
Numerical Study of Natural Convection in Porous Media (Metals) Using Lattice Boltzmann Method (LBM)
,”
Int. J. Heat Fluid Flow
,
31
(
5
), pp.
925
934
.
21.
Joshi
,
H.
,
Agarwal
,
A.
,
Puranik
,
B.
,
Shu
,
C.
, and
Agrawal
,
A.
,
2010
, “
A Hybrid FVM–LBM Method for Single and Multi-Fluid Compressible Flow Problems
,”
Int. J. Numer. Methods fluids
,
62
(
4
), pp.
403
427
.
22.
Luan
,
H.-B.
,
Xu
,
H.
,
Chen
,
L.
,
Sun
,
D.-L.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2011
, “
Evaluation of the Coupling Scheme of FVM and LBM for Fluid Flows Around Complex Geometries
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
1975
1985
.
23.
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
329
364
.
24.
Vasheghani Farahani
,
M.
,
Foroughi
,
S.
,
Norouzi
,
S.
, and
Jamshidi
,
S.
,
2019
, “
Mechanistic Study of Fines Migration in Porous Media Using Lattice Boltzmann Method Coupled With Rigid Body Physics Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
123001
.
25.
Ma
,
X.
,
Mou
,
J.
,
Lin
,
H.
,
Jiang
,
F.
,
Liu
,
K.
, and
Zhao
,
X.
,
2017
, “
Lattice Boltzmann Simulation of Wormhole Propagation in Carbonate Acidizing
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042002
.
26.
Xia
,
T.
,
Feng
,
Q.
,
Wang
,
S.
,
Shu
,
Q.
,
Zhang
,
Y.
, and
Sun
,
Y.
,
2022
, “
A Numerical Study of Particle Migration in Porous Media During Produced Water Reinjection
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
073002
.
27.
Huang
,
S.
,
Zhao
,
Y.
,
Zhang
,
M.
,
Zhou
,
H.
,
Zhu
,
L.
, and
Zhang
,
T.
,
2023
, “
Water Invasion Into Multi-Layer and Multi-Pressure Carbonate Reservoir: A Pore-Scale Simulation
,”
ASME J. Energy Resour. Technol.
,
145
(
8
), p.
083501
.
28.
Lin
,
W.
,
Li
,
X.
,
Yang
,
Z.
,
Xiong
,
S.
,
Luo
,
Y.
, and
Zhao
,
X.
,
2020
, “
Modeling of 3D Rock Porous Media by Combining X-ray CT and Markov Chain Monte Carlo
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
013001
.
29.
Aidun
,
C. K.
, and
Clausen
,
J. R.
,
2010
, “
Lattice-Boltzmann Method for Complex Flows
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
439
472
.
30.
Mohamad
,
A.
,
2011
,
Lattice Boltzmann Method
,
Springer
,
New York
.
31.
Kang
,
Q.
,
Lichtner
,
P. C.
, and
Zhang
,
D.
,
2006
, “
Lattice Boltzmann Pore-Scale Model for Multicomponent Reactive Transport in Porous Media
,”
J. Geophys. Res.: Solid Earth
,
111
(
B5
), p.
B5
.
32.
Xu
,
K.
, and
He
,
X.
,
2003
, “
Lattice Boltzmann Method and Gas-Kinetic BGK Scheme in the Low-Mach Number Viscous Flow Simulations
,”
J. Comput. Phys.
,
190
(
1
), pp.
100
117
.
33.
Ginzburg
,
I.
,
2008
, “
Consistent Lattice Boltzmann Schemes for the Brinkman Model of Porous Flow and Infinite Chapman-Enskog Expansion
,”
Phys. Rev. E: Stat. Nonlinear Soft Matter Phys.
,
77
(
6
), p.
066704
.
34.
Zhang
,
R.
,
Guo
,
Y.
,
Yu
,
J.
, and
Lin
,
S.
,
2023
, “
Interlayer Confinement Imprinting to Enhance the Feasibility of Li/Al-LDHs in Lithium Extraction From Sulfate-Type Brines
,”
Appl. Surf. Sci.
,
639
, p.
158241
.
35.
Simonin
,
J.-P.
,
2016
, “
On the Comparison of Pseudo-First Order and Pseudo-Second Order Rate Laws in the Modeling of Adsorption Kinetics
,”
Chem. Eng. J.
,
300
, pp.
254
263
.
36.
Revellame
,
E. D.
,
Fortela
,
D. L.
,
Sharp
,
W.
,
Hernandez
,
R.
, and
Zappi
,
M. E.
,
2020
, “
Adsorption Kinetic Modeling Using Pseudo-First Order and Pseudo-Second Order Rate Laws: A Review
,”
Cleaner Eng. Technol.
,
1
, p.
100032
.
37.
Haynes
,
W. M.
,
2016
,
CRC Handbook of Chemistry and Physics
,
CRC Press
,
Boca Raton, FL
.
38.
Zhong
,
J.
,
Lin
,
S.
, and
Yu
,
J.
,
2021
, “
Li+ Adsorption Performance and Mechanism Using Lithium/Aluminum Layered Double Hydroxides in Low Grade Brines
,”
Desalination
,
505
, p.
114983
.
39.
Jiang
,
H.
,
Zhang
,
S.
,
Yang
,
Y.
, and
Yu
,
J.
,
2020
, “
Synergic and Competitive Adsorption of Li–Na–MgCl 2 Onto Lithium–Aluminum Hydroxides
,”
Adsorption
,
26
(
7
), pp.
1039
1049
.
40.
Carman
,
P. C.
,
1997
, “
Fluid Flow Through Granular Beds
,”
Chem. Eng. Res. Des.
,
75
, pp.
S32
S48
.
41.
Finsterle
,
S.
,
1993
,
ITOUGH2 Users Guide Version 2.2
,
Lawrence Berkeley Lab.
,
Berkeley, CA
.
You do not currently have access to this content.