Graphical Abstract Figure

IRT and high-speed flame imaging setup

Graphical Abstract Figure

IRT and high-speed flame imaging setup

Close modal

Abstract

The present research work investigated the combustion characteristics of lean premixed ammonia/methane/air flames in an atmospheric pressure swirl-stabilized gas turbine can combustor. The study focused on characteristics such as flame structure, flame stability, combustor liner wall heat load and emissions. Different volume % of ammonia–methane (0–50% ammonia, the rest being methane) blends were considered at an equivalence ratio = 0.6 and at Reynolds number ~50,000 where the flame was sustained using a 10% methane pilot flame. High-speed flame luminosity imaging was carried out to study characteristics such as flame structure and flame stability. Infrared thermography technique was used to simultaneously measure both outer and inner liner wall temperatures and to estimate the liner wall heat load. For studying emissions, steady-state numerical modeling was carried out using the converge cfd 3.0 software where both isothermal and adiabatic cases were studied; The latter comprised the entire volume fraction range of ammonia. Particle image velocimetry data were used to validate the numerical model. From the study, ammonia/methane/air flames were found to exhibit increased flame–turbulence interaction compared to the pure methane–air flame. Flame instability and flame extinction were observed in the 50% ammonia–50% methane flame in the downstream section of the combustor away from the pilot flame and along the combustor wall unlike the other flame cases. Compared to the combustor wall heat load in the pure methane–air flame, in ammonia/methane/air flames, the combustor wall heat load was found to be reduced by ~10% to 40% for various cases. In addition, NOx emissions for ammonia/methane/air flames were found to be less under isothermal wall conditions as compared to adiabatic wall condition because of unburnt fuel.

References

1.
Droege
,
P.
,
2002
, “
Renewable Energy and the City: Urban Life in an Age of Fossil Fuel Depletion and Climate Change
,”
Bull. Sci. Technol. Soc.
,
22
(
2
), pp.
87
99
.
2.
Shukla
,
P. R.
,
Skea
,
J.
,
Slade
,
R.
,
Fradera
,
R.
,
Pathak
,
M.
,
Khourdajie
,
A. A.
,
Belkacemi
,
M.
, et al.,
2022
, “Mitigation of Climate Change,” Technical Reports, IPCC Sixth Assessment Report.
3.
Stancin
,
H.
,
Mikulcic
,
H.
,
Wang
,
X.
, and
Duic
,
N.
,
2020
, “
A Review on Alternative Fuels in Future Energy System
,”
Renew. Sustain. Energy Rev.
,
128
, p.
109927
.
4.
Kobayashi
,
H.
,
Hayakawa
,
A.
,
Somarathne
,
K. K. A.
, and
Okafor
,
E. C.
,
2019
, “
Science and Technology of Ammonia Combustion
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
109
133
.
5.
Elbaz
,
A. M.
,
Wang
,
S.
,
Guiberti
,
T. F.
, and
Roberts
,
W. L.
,
2022
, “
Review on the Recent Advances on Ammonia Combustion From the Fundamentals to the Applications
,”
Fuel Commun.
,
10
, p.
100053
.
6.
Yue
,
M.
,
Lambert
,
H.
,
Pahon
,
E.
,
Roche
,
R.
,
Jemei
,
S.
, and
Hissel
,
D.
,
2021
, “
Hydrogen Energy Systems: A Critical Review of Technologies, Applications, Trends and Challenges
,”
Renew. Sustain. Energy Rev.
,
146
, p.
111180
.
7.
Lesmana
,
H.
,
Zhang
,
Z.
,
Li
,
X.
,
Zhu
,
M.
,
Xu
,
W.
, and
Zhang
,
D.
,
2019
, “
NH3 as a Transport Fuel in Internal Combustion Engines: A Technical Review
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
070703
.
8.
Proniewicz
,
M.
,
Petela
,
K.
,
Szlęk
,
A.
, and
Adamczyk
,
W.
,
2024
, “
Life Cycle Assessment of Selected Ammonia Production Technologies From the Perspective of Ammonia as a Fuel for Heavy-Duty Vehicle
,”
ASME J. Energy Resour. Technol.
,
146
(
3
), p.
030905
.
9.
Kroch
,
E.
,
1945
, “
Ammonia—A Fuel for Motor Buses
,”
J. Inst. Pet.
,
31
(
213
), pp.
213
233
.
10.
Pratt
,
D.
,
1967
, “Performance of Ammonia-Fired Gas Turbine Combustors,” Technical Report, Report No. TS-67-5, University of California, Berkeley, CA, Technical Paper.
11.
Verkamp
,
F.
,
Hardin
,
M.
, and
Williams
,
J.
,
1967
, “
Ammonia Combustion Properties and Performance in Gas-Turbine Burners
,”
Symp. (Int.) Combust.
,
11
(
1
), pp.
985
992
.
12.
Pashchenko
,
D.
,
2024
, “
Ammonia Fired Gas Turbines: Recent Advances and Future Perspectives
,”
Energy
,
290
, p.
130275
.
13.
Valera-Medina
,
A.
,
Morris
,
S.
,
Runyon
,
J.
,
Pugh
,
D.
,
Marsh
,
R.
,
Beasley
,
P.
, and
Hughes
,
T.
,
2015
, “
Ammonia, Methane and Hydrogen for Gas Turbines
,”
Energy Procedia
,
75
, pp.
118
123
.
14.
Iki
,
N.
,
Kurata
,
O.
,
Matsunuma
,
T.
,
Inoue
,
T.
,
Suzuki
,
M.
,
Tsujimura
,
T.
, and
Furutani
,
H.
,
2015
, “
Micro Gas Turbine Firing Kerosene and Ammonia
,” Proceedings of the Turbo Expo: Power for Land, Sea and Air, p.
V008T23A023
, Paper No. GT2015-43689.
15.
Kurata
,
O.
,
Iki
,
N.
,
Matsunuma
,
T.
,
Inoue
,
T.
,
Tsujimura
,
T.
,
Furutani
,
H.
,
Kobayashi
,
H.
, and
Hayakawa
,
A.
,
2017
, “
Performances and Emission Characteristics of NH3–Air and NH3CH4–Air Combustion Gas-Turbine Power Generations
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3351
3359
.
16.
Okafor
,
E. C.
,
Somarathne
,
K. K. A.
,
Hayakawa
,
A.
,
Kudo
,
T.
,
Kurata
,
O.
,
Iki
,
N.
, and
Kobayashi
,
H.
,
2019
, “
Towards the Development of an Efficient Low-NOx Ammonia Combustor for a Micro Gas Turbine
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4597
4606
.
17.
Valera-Medina
,
A.
,
Marsh
,
R.
,
Runyon
,
J.
,
Pugh
,
D.
,
Beasley
,
P.
,
Hughes
,
T.
, and
Bowen
,
P.
,
2017
, “
Ammonia–Methane Combustion in Tangential Swirl Burners for Gas Turbine Power Generation
,”
Appl. Energy
,
185
, pp.
1362
1371
.
18.
Xiao
,
H.
,
Valera-Medina
,
A.
,
Marsh
,
R.
, and
Bowen
,
P. J.
,
2017
, “
Numerical Study Assessing Various Ammonia/Methane Reaction Models for Use Under Gas Turbine Conditions
,”
Fuel
,
196
, pp.
344
351
.
19.
Honzawa
,
T.
,
Kai
,
R.
,
Okada
,
A.
,
Valera-Medina
,
A.
,
Bowen
,
P. J.
, and
Kurose
,
R.
,
2019
, “
Predictions of NO and CO Emissions in Ammonia/Methane/Air Combustion by LES Using a Non-adiabatic Flamelet Generated Manifold
,”
Energy
,
186
, p.
115771
.
20.
Zhang
,
M.
,
Wei
,
X.
,
Wang
,
J.
,
Huang
,
Z.
, and
Tan
,
H.
,
2021
, “
The Blow-Off and Transient Characteristics of Co-firing Ammonia/Methane Fuels in a Swirl Combustor
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5181
5190
.
21.
Lai
,
S.
,
Chen
,
D.
,
Zhang
,
J.
,
Xie
,
Y.
,
Li
,
M. F.
,
Li
,
J.
,
Huang
,
H.
, and
Kobayashi
,
N.
,
2024
, “
Blow-Off Limits, Flame Structure, and Emission Characteristics of Lean Partially Premixed Swirl-Stabilized Flames With NH3/CH4
,”
Energy Fuels
,
38
(
5
), pp.
4721
4732
.
22.
Viswamithra
,
V. N.
, and
Menon
,
S. K.
,
2022
, “
A Distributed Fuel Injection Approach to Suppress Lean Blow-Out and NOx Emissions in a Methane–Ammonia–Fueled Premixed Swirl Combustor
,”
ASME J. Eng. Gas Turbine Power
,
144
(
6
), p.
061015
.
23.
Yamashita
,
H.
,
Hayakawa
,
A.
,
Okafor
,
E. C.
,
Colson
,
S.
,
Somarathne
,
K. D. K. A.
,
Tsujimura
,
T.
,
Ito
,
S.
,
Uchida
,
M.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2024
, “
Optimum Primary Equivalence Ratio for Rich-Lean Two-Stage Combustion of Non-premixed Ammonia/Methane/Air and Ammonia/Hydrogen/Air Flames in a Swirling Flow
,”
Fuel
,
368
, p.
131598
.
24.
Zhang
,
M.
,
Wei
,
X.
,
An
,
Z.
,
Okafor
,
E. C.
,
Guiberti
,
T. F.
,
Wang
,
J.
, and
Huang
,
Z.
,
2025
, “
Flame Stabilization and Emission Characteristics of Ammonia Combustion in Lab-Scale Gas Turbine Combustors: Recent Progress and Prospects
,”
Prog. Energy Combust. Sci.
,
106
, p.
101193
.
25.
Seume
,
J. R.
,
Vortmeyer
,
N.
,
Krause
,
W.
,
Hermann
,
J.
,
Hantschk
,
C. -C.
,
Zangl
,
P.
,
Gleis
,
S.
,
Vortmeyer
,
D.
, and
Orthmann
,
A.
,
1998
, “
Application of Active Combustion Instability Control to a Heavy Duty Gas Turbine
,”
ASME J. Eng. Gas Turbine Power
,
120
(
4
), pp.
721
726
.
26.
Nemitallah
,
M. A.
,
Haque
,
M. A.
,
Hussain
,
M.
,
Abdelhafez
,
A.
, and
Habib
,
M. A.
,
2022
, “
Stratified and Hydrogen Combustion Techniques for Higher Turndown and Lower Emissions in Gas Turbines
,”
ASME J. Energy Res. Technol.
,
144
(
2
), p.
020801
.
27.
Li
,
J.
,
Kwon
,
H.
,
Seksinsky
,
D.
,
Doleiden
,
D.
,
O’Connor
,
J.
,
Xuan
,
Y.
,
Akiki
,
M.
, and
Blust
,
J.
,
2022
, “
Describing the Mechanism of Instability Suppression Using a Central Pilot Flame With Coupled Experiments and Simulations
,”
ASME J. Eng. Gas Turbine Power
,
144
(
1
), p.
011015
.
28.
Avila
,
C. D.
,
Cardona
,
S.
,
Abdullah
,
M.
,
Younes
,
M.
,
Jamal
,
A.
,
Guiberti
,
T. F.
, and
Roberts
,
W. L.
,
2023
, “
Experimental Assessment of the Performance of a Commercial Micro Gas Turbine Fueled by Ammonia-Methane Blends
,”
ASME Appl. Energy Combust. Sci.
,
13
, p.
100104
.
29.
Avila
,
C.
,
Wang
,
G.
,
Zhu
,
X.
,
Es-Sebbar
,
E.-T.
,
Abdullah
,
M.
,
Younes
,
M.
,
Jamal
,
A.
,
Guiberti
,
T.
, and
Roberts
,
W. L.
,
2022
, “
Lean Stability Limits and Exhaust Emissions of Ammonia-Methane-Air Swirl Flames at Micro Gas Turbine Relevant Pressure
,” Proceedings of the Turbo Expo: Power for Land, Sea and Air, p.
V03AT04A004
, Paper No. GT2022-78304.
30.
Jimenez
,
C. D. A.
,
Cardona
,
S.
,
Juaied
,
M. A.
,
Younes
,
M.
,
Jamal
,
A.
,
Guiberti
,
T. F.
, and
Roberts
,
W. L.
,
2023
, “
Influence of the Pilot Flame on the Morphology and Exhaust Emissions of NH3CH4–Air Swirl Flames Using a Reduced-Scale Burner at Atmospheric Pressure
,”
Energies
,
16
(
1
), p.
231
.
31.
Patil
,
S.
,
Abraham
,
S.
,
Tafti
,
D.
,
Ekkad
,
S.
,
Kim
,
Y.
,
Dutta
,
P.
,
Moon
,
H.-K.
, and
Srinivasan
,
R.
,
2011
, “
Experimental and Numerical Investigation of Convective Heat Transfer in a Gas Turbine Can Combustor
,”
ASME J. Turbomach.
,
133
(
1
), p.
011028
.
32.
Ramirez
,
D. G.
,
2017
, “
Heat Transfer and Flow Measurements in an Atmospheric Lean Pre-mixed Combustor
,” Ph.D. thesis,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.
33.
Ramakrishnan
,
K. R.
,
2021
, “
Characterization of Liner Wall Heat Load for a Low NOx Lean Premixed Swirl Stabilized Can Combustor Under Reacting Conditions
,” Ph.D. thesis,
North Carolina State University
,
Raleigh, NC
.
34.
Ahmed
,
S.
,
2021
, “
Flow and Heat Transfer in an Industrial Swirl Stabilized Can Combustor—Development and Testing of Cooling Concepts
,” Ph.D. thesis,
North Carolina State University
,
Raleigh, NC
.
35.
Fused Quartz/Fused Silica Average Transmittance Curves
,
2019
, “Technical Glass Products,” Painesville, OH, https://technicalglass.com/fused-quartz-transmission/
36.
Sergeev
,
O. A.
,
Shashkov
,
A. G.
, and
Umanskii
,
A. S.
,
1982
, “
Thermophysical Properties of Quartz Glass
,”
J. Eng. Phys. Thermophys.
,
43
, pp.
1375
1383
.
37.
Richards
,
K. J.
,
Senecal
,
K. P.
, and
Pomraning
,
E.
,
2023
, “CONVERGE CFD 3.0,” Convergent Science, https://convergecfd.com/
38.
Chaudhury
,
M. D.
,
Sahoo
,
A.
,
Ekkad
,
S. V.
, and
Narayanaswamy
,
V.
,
2024
, “
An Investigation of Pilot-Assisted Premixed Ammonia/Methane/Air Blends as Alternative Fuels in a Swirl-Stabilized Gas Turbine Combustor
,”
Int. J. Energy Clean Environ.
,
25
(
8
), pp.
15
39
.
39.
Escue
,
A.
, and
Cui
,
J.
,
2010
, “
Comparison of Turbulence Models in Simulating Swirling Pipe Flows
,”
Appl. Math. Model.
,
34
(
10
), pp.
2840
2849
.
40.
Perini
,
F.
,
Zha
,
K.
,
Busch
,
S.
, and
Reitz
,
R.
,
2017
, “Comparison of Linear, Non-linear and Generalized RNG-Based k-Epsilon Models for Turbulent Diesel Engine Flows,” SAE Technical Paper (2017-01-0561).
41.
Li
,
R.
,
Konnov
,
A. A.
,
He
,
G.
,
Qin
,
F.
, and
Zhang
,
D.
,
2019
, “
Chemical Mechanism Development and Reduction for Combustion of NH3/H2/CH4 Mixtures
,”
Fuel
,
257
, p.
116059
.
42.
Richards
,
K. J.
,
Senecal
,
K. P.
, and
Pomraning
,
E.
,
2025
, CONVERGE 3.0, Convergent Science, Madison, WI, https://convergecfd.com/
43.
Chaudhury
,
M. D.
,
Sahoo
,
A.
,
Ekkad
,
S. V.
, and
Nayananaswamy
,
V.
,
2023
, “
Numerical Simulation of Premixed Ammonia/Methane/Air Blends in a Swirl-Stabilized Gas Turbine Combustor
,” Proceedings of the AIAA SCITECH 2023 Forum, Paper No. AIAA2023-0497.
44.
Chaudhury
,
M. D.
,
Sahoo
,
A.
,
Ekkad
,
S. V.
, and
Narayanaswamy
,
V.
,
2024
, “
Characteristics of Premixed Ammonia/Methane/Air Blends as an Alternative Fuel in a Swirl-Stabilized Gas Turbine Combustor Under Varying Pilot Percentage
,”
ASME J. Eng. Gas Turbines Power
,
146
(
11
), p.
111012
.
45.
Law
,
C. K.
,
2006
,
Combustion Physics
,
Cambridge University Press
,
New York
.
46.
Xu
,
L.
,
Fan
,
Q.
,
Liu
,
X.
,
Cai
,
X.
,
Subash
,
A. A.
,
Brackmann
,
C.
,
Li
,
Z.
,
Aldén
,
M.
, and
Bai
,
X.-S.
,
2023
, “
Flame/Turbulence Interaction in Ammonia/Air Premixed Flames at High Karlovitz Numbers
,”
Proc. Combust. Inst.
,
39
, pp.
2289
2298
.
47.
Xiong
,
Y.
,
Roberts
,
W.
,
Drake
,
M.
, and
Fansler
,
T.
,
2001
, “
Investigation of Pre-mixed Flame-Kernel/Vortex Interactions Via High-Speed Imaging
,”
Combust. Flame
,
126
(
4
), pp.
1827
1844
.
48.
Renard
,
P.
,
Thévenin
,
D.
,
Rolon
,
J.
, and
Candel
,
S.
,
2000
, “
Dynamics of Flame/Vortex Interactions
,”
Prog. Energy Combust. Sci.
,
26
(
3
), pp.
225
282
.
49.
Schindelin
,
J.
,
Arganda-Carreras
,
I.
,
Frise
,
E.
,
Kaynig
,
V.
,
Longair
,
M.
,
Pietzsch
,
T.
,
Preibisch
,
S.
, et al.,
2012
, “
Fiji: An Open-Source Platform for Biological-Image Analysis
,”
Nat. Methods
,
9
, pp.
676
682
.
50.
Wei
,
X.
,
Zhang
,
M.
,
An
,
Z.
,
Wang
,
J.
,
Huang
,
Z.
, and
Tan
,
H.
,
2021
, “
Large Eddy Simulation on Flame Topologies and the Blow-Off Characteristics of Ammonia/Air Flame in a Model Gas Turbine Combustor
,”
Fuel
,
298
, p.
120846
.
51.
Samaniego
,
J.-M.
, and
Mantel
,
T.
,
1999
, “
Fundamental Mechanisms in Premixed Turbulent Flame Propagation Via Flame–Vortex Interactions: Part I: Experiment
,”
Combust. Flame
,
118
(
4
), pp.
537
556
.
52.
Mattingly
,
J. D.
,
1996
,
Elements of Gas Turbine Propulsion
,
McGraw-Hill, Inc.
,
New York
.
53.
Xiao
,
H.
,
Valera-Medina
,
A.
, and
Bowen
,
P. J.
,
2017
, “
Study on Premixed Combustion Characteristics of Co-firing Ammonia/Methane Fuels
,”
Energy
,
140
, pp.
125
135
.
54.
Ariemmaa
,
G. B.
,
Sorrentinoa
,
G.
,
Ragucci
,
R.
,
de Joannonb
,
M.
, and
Sabia
,
P.
,
2022
, “
Ammonia/Methane Combustion: Stability and NOx Emissions
,”
Combust. Flame
,
241
, p.
112071
.
You do not currently have access to this content.