Abstract

Accurate and real-time detection of nitrogen oxide (NOx) concentration at the inlet of a denitrification reactor plays a key role in controlling NOx emission in thermal power plants. However, time delays often exist when using the traditional continuous emission monitoring system (CEMS) to obtain NOx concentration. In the present work, a data-driven method based on random forest (RF) is proposed to address this issue. First, a heuristic method is proposed for extracting variables that are beneficial for modeling based on the maximum information coefficient (MIC). To tune the threshold of MIC, an RF regression model is constructed, and the MIC threshold can be adjusted iteratively. Then, the variable importance index of RF is used in evaluating the remaining variables, and redundant variables are deleted. Second, an improved RF regression algorithm is used to establish NOx emission prediction model and an updating strategy is proposed to ensure that the model can be maintained timely and effectively when applied online. Finally, the proposed method is tested using a real-world industrial dataset. The results show that the proposed method has a greater prediction accuracy (root-mean-squared error (RMSE) = 2.90 mg/m3, mean absolute percentage error (MAPE) = 1.41%, mean absolute error (MAE) = 2.01 mg/m3, and R2 = 0.96 on industrial dataset) and robustness compared to traditional models.

References

1.
Zhang
,
Y.
,
Dong
,
Z.
,
Kong
,
W.
, and
Meng
,
K.
,
2019
, “
A Composite Anomaly Detection System for Data-Driven Power Plant Condition Monitoring
,”
IEEE Trans. Ind. Inf.
,
16
(
7
), pp.
4390
4402
.
2.
Wang
,
X.
,
He
,
H.
, and
Li
,
L.
,
2019
, “
A Hierarchical Deep Domain Adaptation Approach for Fault Diagnosis of Power Plant Thermal System
,”
IEEE Trans. Ind. Inf.
,
15
(
9
), pp.
5139
5148
.
3.
Ahmadi
,
M.
,
Nazari
,
M. A.
,
Sadeghzadeh
,
M.
,
Pourfayaz
,
F.
,
Ghazvini
,
M.
,
Ming
,
T.
,
Meyer
,
J. P.
, and
Sharifpur
,
M.
,
2018
, “
Thermodynamic and Economic Analysis of Performance Evaluation of All the Thermal Power Plants: A Review
,”
Energy Sci. Eng.
,
7
(
1
), pp.
30
65
.
4.
Smrekar
,
J.
,
Potočnik
,
P.
, and
Senegačnik
,
A.
,
2013
, “
Multi-Step-Ahead Prediction of NOx Emissions for a Coal-Based Boiler
,”
Appl. Energy
,
106
, pp.
89
99
.
5.
Wen
,
X.
,
Li
,
K.
, and
Wang
,
J.
,
2023
, “
NOx Emission Predicting for Coal-Fired Boilers Based on Ensemble Learning Methods and Optimized Base Learners
,”
Energy
,
264
, p.
126171
.
6.
Zhuo
,
J.
,
Jiao
,
W.
,
Song
,
S.
,
Song
,
G.
,
Xiong
,
S.
,
Yao
,
Q.
, and
Pan
,
T.
,
2016
, “
A Review on Nitrogen Oxides Prediction Model in Combustion Optimization of Boilers
,”
J. Combust. Sci. Technol.
,
22
(
6
), pp.
531
540
.
7.
Xie
,
P.
,
Gao
,
M.
,
Zhang
,
H.
,
Niu
,
Y.
, and
Wang
,
X.
,
2020
, “
Dynamic Modeling for NOx Emission Sequence Prediction of SCR System Outlet Based on Sequence to Sequence Long Short-Term Memory Network
,”
Energy
,
190
, p.
116482
.
8.
Yang
,
Y.
,
2017
, “
Review of Desulfurization and Denitrification Technology Used for Flue Gas Discharged From Coal-Fired Power Plant
,”
Energy Energy Conser.
,
10
, pp.
109
110
.
9.
Lv
,
Y.
,
Lv
,
X.
,
Fang
,
F.
,
Yang
,
T.
, and
Romero
,
C. E.
,
2020
, “
Adaptive Selective Catalytic Reduction Model Development Using Typical Operating Data in Coal-Fired Power Plants
,”
Energy
,
192
, p.
116589
.
10.
Schar
,
C. M.
,
Oner
,
C. H.
, and
Geering
,
H. P.
,
2006
, “
Control of an SCR Catalytic Converter System for a Mobile Heavy-Duty Application
,”
IEEE Trans. Control Syst. Technol.
,
14
(
4
), pp.
641
653
.
11.
Wu
,
X.
,
Yu
,
X.
,
Xu
,
R.
,
Cao
,
M.
, and
Sun
,
K.
,
2022
, “
Nonlinear Dynamic Soft-Sensing Modeling of NOx Emission of a Selective Catalytic Reduction Denitration System
,”
IEEE Trans. Instrum. Meas.
,
71
, pp.
1
11
.
12.
Kang
,
J.
,
Niu
,
Y.
,
Hu
,
B.
,
Li
,
H.
, and
Zhou
,
Z.
,
2021
, “
Dynamic Modeling of SCR Denitration Systems in Coal-Fired Power Plants Based on a Bi-Directional Long Short-Term Memory Method
,”
Process Saf. Environ. Prot.
,
148
, pp.
867
878
.
13.
Liu
,
Y.
,
Zhou
,
J.
, and
Fan
,
W.
,
2022
, “
A Novel Robust Dynamic Method for NOx Emissions Prediction in a Thermal Power Plant
,”
Can. J. Chem. Eng.
,
101
(
5
), pp.
2391
2402
.
14.
Gu
,
X.
,
Li
,
B.
,
Sun
,
C.
,
Liao
,
H.
,
Zhao
,
Y.
, and
Yang
,
Y.
,
2022
, “
An Improved Hourly-Resolved NOx Emission Inventory for Power Plants Based on Continuous Emission Monitoring System (CEMS) Database: A Case in Jiangsu, China
,”
J. Cleaner Prod.
,
369
, p.
133176
.
15.
Dong
,
R.
,
Zhang
,
K.
, and
Guo
,
Y.
,
2021
, “
Reasons Analysis of the Large Deviation in the NOx Emission Data of the Coal-Fired Power Plant
,”
IOP Conf. Ser. Earth Environ. Sci.
,
675
(
1
), p.
012030
.
16.
Zhang
,
L.
,
Lin
,
D.
,
Wang
,
Y.
,
Ji
,
G.
,
Ma
,
S.
,
Cao
,
Z.
,
Liu
,
W.
,
Liu
,
Z.
,
Ma
,
Z.
, and
Wang
,
B.
,
2023
, “
Review of Applications of Machine Learning in Nitrogen Oxides Reduction in Thermal Power Plants
,”
Therm. Power Gener.
,
52
(
1
), pp.
7
17
.
17.
Shen
,
Y.
, and
Gao
,
X.
,
2011
, “
Prediction Model for NOx Emissions During the Operation of Pulverized-Coal Fired Utility Boiler
,”
Jiangsu Electr. Eng.
,
30
(
6
), pp.
73
76
.
18.
Lv
,
Y.
,
Romero
,
C. E.
,
Yang
,
T.
,
Fang
,
F.
, and
Liu
,
J.
,
2018
, “
Typical Condition Library Construction for the Development of Data-Driven Models in Power Plants
,”
Appl. Therm. Eng.
,
143
, pp.
160
171
.
19.
Yu
,
K.
,
Zhang
,
D.
,
Liang
,
J.
,
Chen
,
K.
,
Yue
,
C.
,
Qiao
,
K.
, and
Wang
,
L.
,
2022
, “
A Correlation-Guided Layered Prediction Approach for Evolutionary Dynamic Multiobjective Optimization
,”
IEEE Trans. Evol. Comput.
,
27
(
5
), pp.
1398
1412
.
20.
Sai
,
T.
, and
Reddy
,
K. A.
,
2014
, “
Measurement and Control of NOx Emissions Using Soft Computing in a Thermal Power Plant
,”
2014 RAECS
,
Chandigarh, India
,
Mar. 6–8
, pp.
1
6
.
21.
Liengaard
,
B. D.
,
Sharma
,
P. N.
,
Hult
,
G. T. M.
,
Jensen
,
M. B.
,
Sarstedt
,
M.
,
Hair
,
J. F.
, and
Ringle
,
C. M.
,
2020
, “
Prediction: Coveted, Yet Forsaken? Introducing a Cross-Validated Predictive Ability Test in Partial Least Squares Path Modeling
,”
Decis. Sci.
,
52
(
2
), pp.
362
392
.
22.
Wang
,
J.
,
Feng
,
Y.
,
Ye
,
S.
,
Zhang
,
Y.
,
Ma
,
Z.
, and
Dong
,
F.
,
2023
, “
NOx Emission Prediction of Coal-Fired Power Units Under Uncertain Classification of Operating Conditions
,”
Fuel
,
343
, p.
127840
.
23.
Yuan
,
Z.
,
Meng
,
L.
,
Gu
,
X.
,
Bai
,
Y.
,
Cui
,
H.
, and
Jiang
,
C.
,
2021
, “
Prediction of NOx Emissions for Coal-Fired Power Plants With Stacked-Generalization Ensemble Method
,”
Fuel
,
289
, pp.
119748
.
24.
Wang
,
W.
,
Fan
,
H.
,
Liang
,
C.
,
Zhao
,
Z.
,
Shao
,
Y.
,
Tan
,
C.
, and
Zheng
,
C.
,
2022
, “
Predictive Modeling of NOx Outlet of Hedged Boiler Based on Random Forest
,”
Therm. Power Gener.
,
51
(
4
), pp.
96
104
.
25.
Napier
,
L. F. A.
, and
Aldrich
,
C.
,
2017
, “
An IsaMill Soft Sensor Based on Random Forests and Principal Component Analysis
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
1175
1180
.
26.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
320
.
27.
Ma
,
H.
,
Peng
,
T.
,
Zhang
,
C.
,
Ji
,
C.
,
Li
,
Y.
, and
Nazir
,
M. S.
,
2023
, “
Developing an Evolutionary Deep Learning Framework With Random Forest Feature Selection and Improved Flow Direction Algorithm for NOx Concentration Prediction
,”
Eng. Appl. Artif. Intell.
,
123
, pp.
106367
.
28.
Sun
,
R.
,
Wang
,
Y.
,
Mou
,
Z.
, and
He
,
K.
,
2023
, “
Fault Diagnosis for Large-Scale Processes Based on Robust Multiblock Global Orthogonal Projections to Latent Structures
,”
IEEE Trans. Autom. Sci. Eng.
,
20
(
3
), pp.
1972
1982
.
29.
Liu
,
J.
,
Lv
,
Y.
, and
Yang
,
T.
,
2012
, “
Least Squares Support Vector Machine Modeling on NOx Emission of Boilers Based on Variable Selection
,”
Proc. CSEE
,
32
(
20
), pp.
102
107
.
30.
Grömping
,
U.
,
2009
, “
Variable Importance Assessment in Regression: Linear Regression Versus Random Forest
,”
Am. Stat.
,
63
(
4
), pp.
308
319
.
31.
Reshef
,
D.
,
Reshef
,
Y.
,
Finucane
,
H.
,
Grossman
,
S.
,
Mcvean
,
G.
,
Turnbaugh
,
P.
,
Lander
,
E.
,
Mitzenmacher
,
M.
, and
Sabeti
,
P.
,
2011
, “
Detecting Novel Associations in Large Data Sets
,”
Science
,
334
(
6062
), pp.
1518
1524
.
32.
Kojadinovic
,
I.
,
2005
, “
On the Use of Mutual Information in Data Analysis: An Overview
,”
11th International Symposium Applied Stochastic Models Data Analysis
,
Brest, France
,
May 17–20
, pp.
738
47
.
33.
Wen
,
T.
,
Dong
,
D.
,
Chen
,
Q.
,
Chen
,
L.
, and
Roberts
,
C.
,
2019
, “
Maximal Information Coefficient-Based Two-Stage Feature Selection Method for Railway Condition Monitoring
,”
IEEE Trans. Intell. Transp. Syst.
,
20
(
7
), pp.
2681
2690
.
34.
Fan
,
R.
,
Chen
,
P.
, and
Lin
,
C.
,
2005
, “
Working Set Selection Using Second Order Information for Training SVM
,”
J. Mach. Learn. Res.
,
6
, pp.
1889
1918
.
You do not currently have access to this content.