Abstract

A significant challenge in the hydrocracking (HC) process is managing the complex reaction path to adjust product selectivity. In this study, the hydrocracking ability of two different catalysts over model paraffin wax was investigated, where the HC activity was analyzed through process conditions for the selectivity of middle distillates. Catalysts containing different metals and support compositions were selected to analyze the effects on product distribution and chemical composition. According to the results, high wax conversion ratios from C21+ cracking were obtained during HC, with primary cracking identified as the main process for the Ni/W-containing catalyst. Furthermore, the Ni/W-containing catalyst is more favorable for middle distillates production, while the Pt-containing catalyst is more reactive for light product yield, such as the gasoline range. Additionally, the latter is more prone to produce i-paraffin compositions under all process parameters compared to the former. Higher temperatures positively affect the production of middle distillates in the case of Ni/W catalyst; namely, the maximum middle distillate (C10–C20) yield of 49 wt% was obtained under 450 °C, 45-min reaction time, and 30 bar initial hydrogen pressure.

References

1.
Suárez París
,
R.
,
L’Abbate
,
M. E.
,
Liotta
,
L. F.
,
Montes
,
V.
,
Barrientos
,
J.
,
Regali
,
F.
,
Aho
,
A.
,
Boutonnet
,
M.
, and
Järås
,
S.
,
2016
, “
Hydroconversion of Paraffinic Wax Over Platinum and Palladium Catalysts Supported on Silica–Alumina
,”
Catal. Today
,
275
, pp.
141
148
.
2.
Hosukoglu
,
M. I.
,
Karakaya
,
M.
, and
Avci
,
A. K.
,
2012
, “
Modeling and Simulation of Hydrocracking of Fischer-Tropsch Hydrocarbons in a Catalytic Microchannel Reactor
,”
Ind. Eng. Chem. Res.
,
51
(
26
), pp.
8913
8921
.
3.
Böhringer
,
W.
,
Kotsiopoulos
,
A.
,
de Boer
,
M.
,
Knottenbelt
,
C.
, and
Fletcher
,
J. C. Q.
,
2007
, “
Selective Fischer-Tropsch Wax Hydrocracking–Opportunity for Improvement of Overall Gas-to-Liquids Processing
,”
Stud. Surf. Sci. Catal.
,
163
(
2
), pp.
345
365
.
4.
West
,
R. E.
, and
Kreith
,
F.
,
2006
, “
A Vision for a Secure Transportation System Without Hydrogen or Oil
,”
ASME J. Energy Resour. Technol.
,
128
(
3
), pp.
236
243
.
5.
Yu
,
G.
,
Askari
,
O.
,
Hadi
,
F.
,
Wang
,
Z.
,
Metghalchi
,
H.
,
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2016
, “
Theoretical Prediction of Laminar Burning Speed and Ignition Delay Time of Gas-to-Liquid Fuel
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022202
.
6.
Burra
,
K. R. G.
,
Sahin
,
M.
,
Zheng
,
Y.
, and
Gupta
,
A. K.
,
2023
, “
Near-Critical CO2-Assisted Liquefaction-Extraction of Biomass and Wastes to Fuels and Value-Added Products
,”
ASME J. Energy Resour. Technol.
,
146
(
1
), p.
011801
.
7.
Naik
,
C. V.
,
Puduppakkam
,
K. V.
, and
Meeks
,
E.
,
2019
, “
A Comprehensive Kinetics Library for Simulating the Combustion of Automotive Fuels
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
092201
.
8.
Seo
,
M. G.
,
Lee
,
D. W.
,
Lee
,
K. Y.
, and
Moon
,
D. J.
,
2015
, “
Pt/Al-SBA-15 Catalysts for Hydrocracking of C21–C34 n-Paraffin Mixture Into Gasoline and Diesel Fractions
,”
Fuel
,
143
(
5
), pp.
63
71
.
9.
Pölczmann
,
G.
,
Valyon
,
J.
, and
Hancsók
,
J.
,
2011
, “
Investigation of Catalytic Conversion of Fischer-Tropsch Wax on Pt/AlSBA-15 and Pt/Beta Zeolite Catalysts
,”
Hung. J. Ind. Chem. Veszpr.
,
39
(
3
), pp.
375
379
.
10.
Zhou
,
Z.
,
Zhang
,
Y.
,
Tierney
,
J. W.
, and
Wender
,
I.
,
2003
, “
Hybrid Zirconia Catalysts for Conversion of Fischer-Tropsch Waxy Products to Transportation Fuels
,”
Fuel Process. Technol.
,
83
(
1–3 SPEC.
), pp.
67
80
.
11.
Fernandes
,
F. A. N.
, and
Teles
,
U. M.
,
2007
, “
Modeling and Optimization of Fischer-Tropsch Products Hydrocracking
,”
Fuel Process. Technol.
,
88
(
2
), pp.
207
214
.
12.
Kang
,
J.
,
Ma
,
W.
,
Keogh
,
R. A.
,
Shafer
,
W. D.
,
Jacobs
,
G.
, and
Davis
,
B. H.
,
2012
, “
Hydrocracking and Hydroisomerization of N-Hexadecane, n-Octacosane and Fischer-Tropsch Wax Over a Pt/SiO2-Al2O3 Catalyst
,”
Catal. Lett.
,
142
(
11
), pp.
1295
1305
.
13.
Calemma
,
V.
,
Gambaro
,
C.
,
Parker
,
W. O.
,
Carbone
,
R.
,
Giardino
,
R.
, and
Scorletti
,
P.
,
2010
, “
Middle Distillates From Hydrocracking of FT Waxes: Composition, Characteristics and Emission Properties
,”
Catal Today
,
149
(
1–2
), pp.
40
46
.
14.
Rossetti
,
I.
,
Gambaro
,
C.
, and
Calemma
,
V.
,
2009
, “
Hydrocracking of Long Chain Linear Paraffins
,”
Chem. Eng. J.
,
154
(
1–3
), pp.
295
301
.
15.
Bouchy
,
C.
,
Hastoy
,
G.
,
Guillon
,
E.
, and
Martens
,
J. A.
,
2009
, “
Fischer-Tropsch Waxes Upgrading Via Hydrocracking and Selective Hydroisomerization
,”
Oil Gas Sci. Technol.
,
64
(
1
), pp.
91
112
.
16.
Nam
,
I.
,
Cho
,
K. M.
,
Seo
,
J. G.
,
Hwang
,
S.
,
Jun
,
K. W.
, and
Song
,
I. K.
,
2009
, “
Production of Middle Distillate From Synthesis Gas in a Dual-Bed Reactor Through Hydrocracking of Wax Over Mesoporous Pd-Al2O3 Composite Catalyst
,”
Catal. Lett.
,
130
(
1–2
), pp.
192
197
.
17.
Lee
,
J.
,
Hwang
,
S.
,
Park
,
D. R.
,
Seo
,
J. G.
,
Youn
,
M. H.
,
Jung
,
J. C.
,
Lee
,
S. B.
,
Chung
,
J. S.
, and
Song
,
I. K.
,
2010
, “
Production of Middle Distillate Through Hydrocracking of Paraffin Wax Over Pd0.15CsxH2.7-XPW12O40 Catalysts: Effect of Cesium Content and Surface Acidity
,”
Korean J. Chem. Eng.
,
27
(
3
), pp.
807
811
.
18.
Lee
,
J.
,
Hwang
,
S.
,
Seo
,
J. G.
,
Lee
,
S. B.
,
Jung
,
J. C.
, and
Song
,
I. K.
,
2010
, “
Production of Middle Distillate Through Hydrocracking of Paraffin Wax Over Pd/SiO2-Al2O3 Catalysts
,”
J. Ind. Eng. Chem.
,
16
(
5
), pp.
790
794
.
19.
Galadima
,
A.
, and
Muraza
,
O.
,
2018
, “
Hydrocracking Catalysts Based on Hierarchical Zeolites: A Recent Progress
,”
J. Ind. Eng. Chem.
,
61
(
5
), pp.
265
280
.
20.
Pölczmann
,
G.
,
Valyon
,
J.
,
Szegedi
,
Á
,
Mihályi
,
R. M.
, and
Hancsók
,
J.
,
2011
, “
Hydroisomerization of Fischer-Tropsch Wax on Pt/AlSBA-15 and Pt/SAPO-11 Catalysts
,”
Top. Catal.
,
54
(
16–18
), pp.
1079
1083
.
21.
Tomasek
,
S.
,
Lónyi
,
F.
,
Valyon
,
J.
,
Wollmann
,
A.
, and
Hancsók
,
J.
,
2018
, “
Fuel Production From Fischer-Tropsch Paraffin Mixtures
,”
Chem. Eng. Trans.
,
70
(
8
), pp.
667
672
.
22.
Liu
,
Y.
,
Murata
,
K.
,
Okabe
,
K.
,
Inaba
,
M.
,
Takahara
,
I.
,
Hanaoka
,
T.
, and
Sakanishi
,
K.
,
2009
, “
Selective Hydrocracking of Fischer-Tropsch Waxes to High-Quality Diesel Fuel Over Pt-Promoted Polyoxocation-Pillared Montmorillonites
,”
Top. Catal.
,
52
(
6–7
), pp.
597
608
.
23.
Alsobaai
,
A. M.
,
Zakaria
,
R.
, and
Hameed
,
B. H.
,
2007
, “
Gas Oil Hydrocracking on NiW/USY Catalyst: Effect of Tungsten and Nickel Loading
,”
Chem. Eng. J.
,
132
(
1–3
), pp.
77
83
.
24.
Leckel
,
D.
,
2009
, “
H2S Effects in Base-Metal-Catalyzed Hydrocracking of Fischer−Tropsch Wax
,”
Energy Fuels
,
23
(
5
), pp.
2370
2375
.
25.
Dik
,
P. P.
,
Pereima
,
V. Y.
,
Nadeina
,
K. A.
,
Kazakov
,
M. O.
,
Klimov
,
O. V.
,
Gerasimov
,
E. Y.
,
Prosvirin
,
I. P.
, and
Noskov
,
A. S.
,
2018
, “
Hydrocracking of Vacuum Gasoil on NiMoW/AAS-Al2O3 Trimetallic Catalysts: Effect of the W: Mo Ratio
,”
Catal. Ind.
,
10
(
1
), pp.
20
28
.
26.
Ali
,
M. A.
,
Tatsumi
,
T.
, and
Masuda
,
T.
,
2002
, “
Development of Heavy Oil Hydrocracking Catalysts Using Amorphous Silica-Alumina and Zeolites as Catalyst Supports
,”
Appl. Catal., A
,
233
(
1–2
), pp.
77
90
.
27.
Yan
,
P. H.
,
Tao
,
Z. C.
,
Hao
,
K.
,
Wang
,
Y. D.
,
Yang
,
Y.
, and
Li
,
Y. W.
,
2013
, “
Effect of Impregnation Methods on Nickel-Tungsten Catalysts and Its Performance on Hydrocracking Fischer-Tropsch Wax
,”
Ranliao Huaxue Xuebao/J. Fuel Chem. Technol.
,
41
(
6
), pp.
691
697
.
28.
Dimitriadis
,
A.
,
Chrysikou
,
L. P.
, and
Bezergianni
,
S.
,
2024
, “
Automotive E-Fuels Via Hydrocracking of FT-Wax: E-Gasoline and e-Diesel Production
,”
Energies (Basel)
,
17
(
11
), p.
2756
.
29.
Gül
,
S.
,
Akgün
,
F.
,
Aydar
,
E.
, and
Ünlü
,
N.
,
2018
, “
Pressurized Gasification of Lignite in a Pilot Scale Bubbling Fluidized Bed Reactor With Air, Oxygen, Steam and CO2 Agents
,”
Appl. Therm. Eng.
,
130
(
3
), pp.
203
210
.
30.
Sukpancharoen
,
S.
,
Hansirisawat
,
P.
, and
Srinophakun
,
T. R.
,
2022
, “
Implementation of Response Surface to Optimum Biodiesel Power Plant Derived From Empty Fruit Bunch
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
012101
.
31.
Hwang
,
S.
,
Lee
,
J.
,
Seo
,
J. G.
,
Park
,
D. R.
,
Youn
,
M. H.
,
Jung
,
J. C.
,
Lee
,
S.
, and
Song
,
I. K.
,
2009
, “
Production of Middle Distillate Through Hydrocracking of Paraffin Wax Over NiMo/SiO2-Al2O3 Catalysts: Effect of Solvent in the Preparation of SiO2-Al2O3 by a Sol-Gel Method
,”
Catal. Lett.
,
132
(
4
), p.
410
.
32.
Brunauer
,
S.
,
Emmett
,
P. H.
, and
Teller
,
E.
,
1938
, “
Adsorption of Gases in Multimolecular Layers
,”
J. Am. Chem. Soc.
,
60
(
2
), pp.
309
319
.
33.
Calemma
,
V.
,
Peratello
,
S.
, and
Perego
,
C.
,
2000
, “
Hydroisomerization and Hydrocracking of Long Chain N-Alkanes on Pt/Amorphous SiO2-Al2O3 Catalyst
,”
Appl. Catal., A
,
190
(
1–2
), pp.
207
218
.
34.
Nishijima
,
A.
,
Sato
,
T.
,
Yoshimura
,
Y.
,
Shimada
,
H.
,
Matsubayashi
,
N.
,
Imamura
,
M.
,
Sugimoto
,
Y.
,
Kameoka
,
T.
, and
Nishimura
,
Y.
,
1996
, “
Two Stage Upgrading of Middle and Heavy Distillates Over Newly Prepared Catalysts
,”
Catal. Today
,
27
(
1–2
), pp.
129
135
.
35.
Kobayashi
,
M.
,
Togawa
,
S.
,
Yachi
,
H.
, and
Ishida
,
K.
,
2007
, “
Control of Macropore Structure of Hydrocracking Catalyst by Silica_Alumina Particle Size and Influence on Hydrocracking Activity and Middle Distillate Selectivity
,”
J. Jpn. Pet. Inst.
,
50
(
5
), pp.
278
282
.
You do not currently have access to this content.