Abstract

This investigation focused on the optimization of pre-treatment conditions of pine waste. The genetic algorithm was applied to determine local Pareto sets of the objective functions of the ash content obtained after proximate analyses of torrefied samples of pine waste (needles), energy consumption during torrefaction, energy yield, fuel value index, severity factor, and energy-mass co-benefit index. The milled form of pine waste samples underwent torrefaction for 5 min, 10 min, and 15 min at temperatures of 210 °C, 220 °C, 230 °C, 240 °C, and 250 °C. The energy dispersive spectroscopy of pine waste after pretreatment was also considered to evaluate the impact of processing parameters on the elemental composition of organic/inorganic content presented in pine waste. The torrefaction condition to minimize the ash content and maximize the volumetric energy density would occur at 249.98 °C for a residence period of 5 min. The torrefaction of pine waste must be performed at 217.24 °C for 15 min to minimize the electricity consumption of an improvised unit. The energy yield obtained experimentally at 250 °C for 5 min showed a consensus with the corresponding solution obtained through the genetic programming. The Pareto front developed for the selected parameters provided a good consensus with the empirical results. The percentage of Ca and Fe contents dropped by 84% and 50% in thermally processed pine waste, respectively.

References

1.
Hilgen
,
B.
,
2022
, “Relation Between Inflation and Gas Prices,” https://medium.com/@hilge1bx/the-relationship-between-inflation-and-gas-prices-88c668c5e74c
2.
MacMahon
,
T.
,
2024
, “Historical Inflation Rate,” https://inflationdata.com/Inflation/Inflation_Rate/HistoricalInflation.aspx, Accessed June 6, 2024.
3.
4.
Bisht
,
A. S.
, and
Thakur
,
N. S.
,
2016
, “
Pine Needles a Source of Energy for Himalayan Region
,”
2016 7th India International Conference on Power Electronics (IICPE)
, pp.
1
4
.
5.
Dhaundiyal
,
A.
, and
Gupta
,
V. K.
,
2014
, “
The Analysis of Pine Needles as a Substrate for Gasification
,”
Hydro Nepal: J. Water Energy Environ.
,
15
, pp.
73
81
.
6.
Raut
,
M. K.
,
Basu
,
P.
, and
Acharya
,
B.
,
2016
, “
The Effect of Torrefaction Pre-Treatment on the Gasification of Biomass
,”
Int. J. Renew. Energy Biofuels
, pp.
1
14
.
7.
Chen
,
W.-H.
,
Lin
,
B.-J.
,
Lin
,
Y.-Y.
,
Chu
,
Y.-S.
,
Ubando
,
A. T.
,
Show
,
P. L.
,
Ong
,
H. C.
, et al
,
2021
, “
Progress in Biomass Torrefaction: Principles, Applications and Challenges
,”
Prog. Energy Combust. Sci.
,
82
, p.
100887
.
8.
Commandré
,
J. M.
, and
Leboeuf
,
A.
,
2014
, “
Volatile Yields and Solid Grindability After Torrefaction of Various Biomass Types
,”
Environ. Prog. Sustain. Energy
,
34
(
4
), pp.
1180
1186
.
9.
Yang
,
H.
,
Yan
,
R.
,
Chen
,
H.
,
Lee
,
D. H.
, and
Zheng
,
C.
,
2007
, “
Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis
,”
Fuel
,
86
(
12–13
), pp.
1781
1788
.
10.
Carlson
,
T. R.
,
Vispute
,
T. P.
, and
Huber
,
G. W.
,
2008
, “
Green Gasoline by Catalytic Fast Pyrolysis of Solid Biomass Derived Compounds
,”
ChemSusChem
,
1
(
5
), pp.
397
400
.
11.
Patwardhan
,
P. R.
,
Brown
,
R. C.
, and
Shanks
,
B. H.
,
2011
, “
Product Distribution From the Fast Pyrolysis of Hemicellulose
,”
ChemSusChem
,
4
(
5
), pp.
636
643
.
12.
Dhaundiyal
,
A.
,
2021
, “
Pre-treated Pine Waste as an Alternative Energy Source
,”
Doctoral thesis
,
Hungarian University of Agriculture and Life Sciences
,
Godollo
.
13.
Chen
,
W.-H.
,
Ye
,
S.-C.
, and
Sheen
,
H.-K.
,
2012
, “
Hydrothermal Carbonization of Sugarcane Bagasse Via Wet Torrefaction in Association With Microwave Heating
,”
Bioresour. Technol.
,
118
, pp.
195
203
.
14.
Wannapeera
,
J.
,
Fungtammasan
,
B.
, and
Worasuwannarak
,
N.
,
2011
, “
Effects of Temperature and Holding Time During Torrefaction on the Pyrolysis Behaviors of Woody Biomass
,”
J. Anal. Appl. Pyrol.
,
92
(
1
), pp.
99
105
.
15.
Dhaundiyal
,
A.
, and
Toth
,
L.
,
2019
, “
Modeling of Hardwood Pyrolysis Using the Convex Combination of the Mass Conversion Points
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061901
.
16.
Phanphanich
,
M.
, and
Mani
,
S.
,
2011
, “
Impact of Torrefaction on the Grindability and Fuel Characteristics of Forest Biomass
,”
Bioresour. Technol.
,
102
(
2
), pp.
1246
1253
.
17.
Wu
,
K.-T.
,
Tsai
,
C.-J.
,
Chen
,
C.-S.
, and
Chen
,
H.-W.
,
2012
, “
The Characteristics of Torrefied Microalgae
,”
Appl. Energy
,
100
, pp.
52
57
.
18.
Park
,
S.-W.
,
Jang
,
C.-H.
,
Baek
,
K.-R.
, and
Yang
,
J.-K.
,
2012
, “
Torrefaction and Low-Temperature Carbonization of Woody Biomass: Evaluation of Fuel Characteristics of the Products
,”
Energy
,
45
(
1
), pp.
676
685
.
19.
Pimchuai
,
A.
,
Dutta
,
A.
, and
Basu
,
P.
,
2010
, “
Torrefaction of Agriculture Residue to Enhance Combustible Properties
,”
Energy Fuels
,
24
(
9
), pp.
4638
4645
.
20.
Sirirermrux
,
N.
,
Laohalidanond
,
K.
, and
Kerdsuwan
,
S.
,
2019
, “
Kinetics of Gaseous Species Formation During Steam Gasification of Municipal Solid Waste in a Fixed Bed Reactor
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
011401
.
21.
Ozveren
,
U.
,
2017
, “
An Artificial Intelligence Approach to Predict Gross Heating Value of Lignocellulosic Fuels
,”
J. Energy Inst.
,
90
(
3
), pp.
397
407
.
22.
García Nieto
,
P. J.
,
García-Gonzalo
,
E.
,
Paredes-Sánchez
,
J. P.
,
Bernardo Sánchez
,
A.
, and
Menéndez Fernández
,
M.
,
2018
, “
Predictive Modelling of the Higher Heating Value in Biomass Torrefaction for the Energy Treatment Process Using Machine-Learning Techniques
,”
Neural Comput. Appl.
,
31
(
12
), pp.
8823
8836
.
23.
Baş
,
D.
, and
Boyacı
,
İ. H.
,
2007
, “
Modeling and Optimization I: Usability of Response Surface Methodology
,”
J. Food Eng.
,
78
(
3
), pp.
836
845
.
24.
Estiati
,
I.
,
Freire
,
F. B.
,
Freire
,
J. T.
,
Aguado
,
R.
, and
Olazar
,
M.
,
2016
, “
Fitting Performance of Artificial Neural Networks and Empirical Correlations to Estimate Higher Heating Values of Biomass
,”
Fuel
,
180
, pp.
377
383
.
25.
Chin
,
K. L.
,
H’ng
,
P. S.
,
Go
,
W. Z.
,
Wong
,
W. Z.
,
Lim
,
T. W.
,
Maminski
,
M.
,
Paridah
,
M. T.
, and
Luqman
,
A. C.
,
2013
, “
Optimization of Torrefaction Conditions for High Energy Density Solid Biofuel From Oil Palm Biomass and Fast Growing Species Available in Malaysia
,”
Ind. Crops Prod.
,
49
, pp.
768
774
.
26.
Lee
,
S. M.
, and
Lee
,
J.-W.
,
2014
, “
Optimization of Biomass Torrefaction Conditions by the Gain and Loss Method and Regression Model Analysis
,”
Bioresour. Technol.
,
172
, pp.
438
443
.
27.
Oh
,
K. C.
,
Park
,
S. Y.
,
Kim
,
S. J.
,
Choi
,
Y. S.
,
Lee
,
C. G.
,
Cho
,
L. H.
, and
Kim
,
D. H.
,
2019
, “
Development and Validation of Mass Reduction Model to Optimize Torrefaction for Agricultural Byproduct Biomass
,”
Renew. Energy
,
139
, pp.
988
999
.
28.
Buratti
,
C.
,
Barbanera
,
M.
,
Lascaro
,
E.
, and
Cotana
,
F.
,
2018
, “
Optimization of Torrefaction Conditions of Coffee Industry Residues Using Desirability Function Approach
,”
Waste Manage.
,
73
, pp.
523
534
.
29.
Dhaundiyal
,
A.
,
2023
, “
Exergy Analysis of a Passive Thermal System Using Hammerstein–Wiener Estimation
,”
ASME J. Energy Resour. Technol.
,
145
(
12
), p.
121301
.
30.
Vargas
,
G. G.
,
Ortiz
,
P. S.
, and
de Oliveira
,
S.
,
2024
, “
Performance Analysis of Waste Biomass Gasification and Renewable Hydrogen Production by Neural Network Algorithm
,”
ASME J. Energy Resour. Technol.
,
146
(
5
), p.
052701
.
31.
Soleimani
,
S.
,
Schaefer
,
L.
,
Liaqat
,
K.
,
Cole
,
A.
,
Temming
,
J.
, and
Kösters
,
H.
,
2024
, “
Enhancing CO2 Water-to-Water Heat Pump Performance Through the Application of a Multi-objective Evolutionary Algorithm
,”
ASME J. Energy Resour. Technol.
,
146
(
5
), p.
051701
.
32.
Loan
,
T. T. H.
,
Ba
,
V. N.
, and
Thien
,
B. N.
,
2022
, “
Natural Radioactivity Level in Fly Ash Samples and Radiological Hazard at the Landfill Area of the Coal-Fired Power Plant Complex, Vietnam
,”
Nucl. Eng. Technol.
,
54
(
4
), pp.
1431
1438
.
33.
Basu
,
P.
,
2013
, “Gasification Theory,”
Biomass Gasification, Pyrolysis and Torrefaction
, pp.
199
248
.
34.
Na
,
B.-I.
,
Ahn
,
B.-J.
, and
Lee
,
J.-W.
,
2014
, “
Changes in Chemical and Physical Properties of Yellow Poplar (Liriodendron tulipifera) During Torrefaction
,”
Wood Sci. Technol.
,
49
(
2
), pp.
257
272
.
35.
Lu
,
K.-M.
,
Lee
,
W.-J.
,
Chen
,
W.-H.
,
Liu
,
S.-H.
, and
Lin
,
T.-C.
,
2012
, “
Torrefaction and Low Temperature Carbonization of Oil Palm Fiber and Eucalyptus in Nitrogen and Air Atmospheres
,”
Bioresour. Technol.
,
123
, pp.
98
105
.
36.
Díez
,
H. E.
, and
Pérez
,
J. F.
,
2017
, “
Physicochemical Characterization of Representative Firewood Species Used for Cooking in Some Colombian Regions
,”
Int. J. Chem. Eng.
,
2017
, pp.
1
13
.
37.
Njoya
,
D.
,
Tadjuidje
,
F. S.
,
Ndzana
,
E. J. A.
,
Pountouonchi
,
A.
,
Tessier-Doyen
,
N.
, and
Lecomte-Nana
,
G.
,
2017
, “
Effect of Flux Content and Heating Rate on the Microstructure and Technological Properties of Mayouom (Western-Cameroon) Kaolinite Clay Based Ceramics
,”
J. Asian Ceram. Soc.
,
5
(
4
), pp.
422
426
.
You do not currently have access to this content.