Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The method of adding exhaust gas to fuel to reduce soot and nitrogen oxide (NOX) is called exhaust gas recirculation (EGR). This article was carried out to investigate the effect of adding N2 and H2O to the fuel side to dilute ethylene on soot generation in laminar diffusion flame by combining experiment and numerical simulation. In the experiment, the flame was optically detected, and the volume fraction of soot and temperature was reconstructed. The numerical simulation adopts a simplified GRI-Mech 3.0 ethylene 23-step combustion reaction mechanism. It introduces virtual species FX (F1H2O, F2H2O, F3H2O) to isolate the effects of H2O addition on thermal, transport, chemical, and density effects. The results show that the numerical values agree well with the experimental results. At the same dilution ratio, the direct involvement of H2O in the reaction affects the flame temperature and intermediate products, leading to a more significant suppressing effect on soot than N2 dilution. After decoupling the effects of H2O, it was found that there are two main reasons for the decrease of soot caused by the addition of H2O. The first is the dilution effect and thermal effect, which hinder the hydrogen extraction C2H2 addition (HACA) reaction by reducing the concentration of intermediate component C2H2, greatly inhibiting the surface growth rate of soot, and playing a decisive role in reducing the formation of soot. The second is the chemical effect, which mainly enhances the oxidation process of soot by increasing the concentration of OH free radicals during combustion through the elementary reaction OH + H2 ↔ H + H2O. Additionally, the degree of influence of various effects on soot was qualitatively determined as follows: dilution effect > chemical effect > thermal effect > density effect > transport effect.

References

1.
Gong
,
C.
,
Si
,
X.
, and
Liu
,
F.
,
2021
, “
Combined Effects of Excess air Ratio and EGR Rate on Combustion and Emissions Behaviors of a GDI Engine With CO2 as Simulated EGR (CO2) at Low Load
,”
Fuel
,
293
, p.
120442
.
2.
Gong
,
C.
,
Si
,
X.
, and
Liu
,
F.
,
2021
, “
Combustion and Emissions Behaviors of a Stoichiometric GDI Engine With Simulated EGR (CO2) at Low Load and Different Spark Timings
,”
Fuel
,
295
, p.
120614
.
3.
Yin
,
X.
,
Li
,
W.
,
Zhang
,
W.
,
Lv
,
X.
,
Yang
,
B.
,
Wang
,
Y.
, and
Zeng
,
K.
,
2022
, “
Experimental Analysis of the EGR Rate and Temperature Impact on Combustion and Emissions Characteristics in a Heavy-Duty NG Engine
,”
Fuel
,
310
, p.
122394
.
4.
Ibrahim
,
M. M.
,
Attia
,
A.
,
Emara
,
A.
, and
Moneib
,
H. A.
,
2020
, “
An Investigation of Soot Volume Fraction and Temperature for Natural Gas Laminar Diffusion Flame Established From a Honeycomb Gaseous Burner
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012202
.
5.
Ibrahim
,
M. M.
,
Attia
,
A.
,
Moneib
,
H. A.
, and
Emara
,
A.
,
2021
, “
Effect of Soot-Inhibitor Additives on the Thermal Structure and Soot Volume Fraction Inside Laminar Diffusion Natural Gas Flames
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
062303
.
6.
Wei
,
S.
,
Chen
,
J.
,
Xu
,
R.
,
Ding
,
T.
, and
Zhao
,
X.
,
2021
, “
Soot Formation With Light Extinction and Grayscale Extraction Methods Applied to Ethanol-Gasoline Blends Laminar Flame
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
032302
.
7.
Wang
,
H.
, and
Frenklach
,
M.
,
1997
, “
A Detailed Kinetic Modeling Study of Aromatics Formation in Laminar Premixed Acetylene and Ethylene Flames
,”
Combust. Flame
,
110
(
1
), pp.
173
221
.
8.
Slavinskaya
,
N. A.
, and
Frank
,
P.
,
2009
, “
A Modelling Study of Aromatic Soot Precursors Formation in Laminar Methane and Ethene Flames
,”
Combust. Flame
,
156
(
9
), pp.
1705
1722
.
9.
Langer
,
R.
,
Mao
,
Q.
, and
Pitsch
,
H.
,
2023
, “
A Detailed Kinetic Model for Aromatics Formation From Small Hydrocarbon and Gasoline Surrogate Fuel Combustion
,”
Combust. Flame
,
258
(
1
), p.
112574
.
10.
Chu
,
H.
,
Xiang
,
L.
,
Meng
,
S.
,
Dong
,
W.
,
Gu
,
M.
, and
Li
,
Z.
,
2021
, “
Effects of N2 Dilution on Laminar Burning Velocity, Combustion Characteristics and NOX Emissions of Rich CH4–Air Premixed Flames
,”
Fuel
,
284
, p.
119017
.
11.
Zhang
,
Y.
,
Xin
,
Y.
,
Si
,
M.
,
Liu
,
F.
, and
Lou
,
C.
,
2023
, “
Experimental Study on Soot Formation and Primary Particle Size in Oxy-Combustion Ethylene Diffusion Flames Under CO2 Substitution for N2
,”
Case Stud. Therm. Eng.
,
48
, p.
103060
.
12.
Moghadasi
,
M. H.
,
Riazi
,
R.
,
Tabejamaat
,
S.
, and
Mardani
,
A.
,
2019
, “
Effects of Preheating and CO2 Dilution on Oxy-Mild Combustion of Natural Gas
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122002
.
13.
Yelishala
,
S. C.
,
Wang
,
Z.
,
Metghalchi
,
H.
,
Levendis
,
Y. A.
,
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2019
, “
Effect of Carbon Dioxide on the Laminar Burning Speed of Propane–Air Mixtures
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082205
.
14.
McEnally
,
C. S.
, and
Pfefferle
,
L. D.
,
2000
, “
The Effect of Nitrogen Dilution on Nonfuel Hydrocarbons in Laminar Nonpremixed Flames
,”
Combust. Sci. Technol.
,
151
(
1
), pp.
133
155
.
15.
Du
,
D. X.
,
Axelbaum
,
R. L.
, and
Law
,
C. K.
,
1991
, “
The Influence of Carbon Dioxide and Oxygen as Additives on Soot Formation in Diffusion Flames
,”
Sympos. Combust.
,
23
(
1
), pp.
1501
1507
.
16.
Zhang
,
C.
,
Atreya
,
A.
, and
Lee
,
K.
,
1992
, “
Sooting Structure of Methane Counterflow Diffusion Flames With Preheated Reactants and Dilution by Products of Combustion
,”
Sympos. Combust.
,
24
(
1
), pp.
1049
1057
.
17.
Liu
,
F.
,
Karataş
,
A. E.
,
Gülder
,
Ö. L.
, and
Gu
,
M.
,
2015
, “
Numerical and Experimental Study of the Influence of CO2 and N2 Dilution on Soot Formation in Laminar Coflow C2H4/Air Diffusion Flames at Pressures Between 5 and 20atm
,”
Combust. Flame
,
162
(
5
), pp.
2231
2247
.
18.
Liu
,
F.
,
Guo
,
H.
,
Smallwood
,
G. J.
, and
Gülder
,
Ö. L.
,
2001
, “
The Chemical Effects of Carbon Dioxide as an Additive in an Ethylene Diffusion Flame: Implications for Soot and NOX Formation
,”
Combust. Flame
,
125
(
1–2
), pp.
778
787
.
19.
Guo
,
H.
, and
Smallwood
,
G. J.
,
2008
, “
A Numerical Study on the Influence of CO2 Addition on Soot Formation in an Ethylene/Air Diffusion Flame
,”
Combust. Sci. Technol.
,
180
(
10–11
), pp.
1695
1708
.
20.
Sirignano
,
M.
, and
D'Anna
,
A.
,
2020
, “
The Role of CO2 Dilution on Soot Formation and Combustion Characteristics in Counter-Flow Diffusion Flames of Ethylene
,”
Exp. Therm. Fluid. Sci.
,
114
, p.
110061
.
21.
Atreya
,
A.
,
Crompton
,
T.
, and
Suh
,
J.
,
2000
, “
A Study of the Chemical and Physical Mechanisms of Fire Suppression by Water
,”
Fire Safety Sci.
,
6
, pp.
493
504
.
22.
Sabia
,
P.
,
Lubrano Lavadera
,
M.
,
Sorrentino
,
G.
,
Giudicianni
,
P.
,
Ragucci
,
R.
, and
de Joannon
,
M.
,
2016
, “
H2O and CO2 Dilution in Mild Combustion of Simple Hydrocarbons
,”
Flow, Turbul. Combust.
,
96
(
2
), pp.
433
448
.
23.
Liu
,
F.
,
Consalvi
,
J.-L.
, and
Fuentes
,
A.
,
2014
, “
Effects of Water Vapor Addition to the Air Stream on Soot Formation and Flame Properties in a Laminar Coflow Ethylene/Air Diffusion Flame
,”
Combust. Flame
,
161
(
7
), pp.
1724
1734
.
24.
Zhang
,
Y.
,
Wang
,
L.
,
Liu
,
P.
,
Guan
,
B.
,
Ni
,
H.
,
Huang
,
Z.
, and
Lin
,
H.
,
2018
, “
Experimental and Kinetic Study of the Effects of CO2 and H2O Addition on PAH Formation in Laminar Premixed C2H4/O2/Ar Flames
,”
Combust. Flame
,
192
, pp.
439
451
.
25.
Ying
,
Y.
, and
Liu
,
D.
,
2019
, “
Effects of Water Addition on Soot Properties in Ethylene Inverse Diffusion Flames
,”
Fuel
,
247
, pp.
187
197
.
26.
Brune
,
M. C.
,
2021
, “
Effects of Water Vapor Addition on Soot Formation in Laminar Ethylene Counterflow Flames and Comparison With CO2 Addition
,”
Bachelor's thesis
,
Federal University of Rio Grande do Sul
,
Porto Alegre
.
27.
Feng
,
T.
,
2021
, “
Effects of EGR on Diesel/Natural Gas Dual-Fuel Engine Combustion and Emission
,”
Master's thesis
,
Kunming University of Science and Technology
,
Kunming
.
28.
Liu
,
B.
,
Wang
,
C.
,
Zhang
,
Y.
,
Si
,
M.
, and
Luo
,
G.
,
2023
, “
Effect of CH4 Addition on Soot Formation in C2H4 Diffusion Flame
,”
ASME J. Energy Resour. Technol.
,
146
(
1
), p.
012301
.
29.
Zhang
,
Y.
,
Liu
,
F.
,
Clavel
,
D.
,
Smallwood
,
G. J.
, and
Lou
,
C.
,
2019
, “
Measurement of Soot Volume Fraction and Primary Particle Diameter in Oxygen Enriched Ethylene Diffusion Flames Using the Laser-Induced Incandescence Technique
,”
Energy
,
177
, pp.
421
432
.
30.
Zhang
,
Y.
,
Liu
,
F.
, and
Lou
,
C.
,
2018
, “
Experimental and Numerical Investigations of Soot Formation in Laminar Coflow Ethylene Flames Burning in O2/N2 and O2/CO2 Atmospheres at Different O2 Mole Fractions
,”
Energy Fuels
,
32
(
5
), pp.
6252
6263
.
31.
Liu
,
H.
,
2012
, “
Combustion Mechanism Reduction & Optimization Based on Sensitivity Analysis & Genetic Algorithm
,”
Master's thesis
,
Shanghai Jiao Tong University
,
Shanghai
.
32.
Brookes
,
S. J.
, and
Moss
,
J. B.
,
1999
, “
Predictions of Soot and Thermal Radiation Properties in Confined Turbulent Jet Diffusion Flames
,”
Combust. Flame
,
116
(
4
), pp.
486
503
.
33.
Ma
,
L.
,
Ning
,
H.
,
Wu
,
J.
,
Cheong
,
K.-P.
, and
Ren
,
W.
,
2018
, “
Characterization of Temperature and Soot Volume Fraction in Laminar Premixed Flames: Laser Absorption/Extinction Measurement and Two-Dimensional Computational Fluid Dynamics Modeling
,”
Energy Fuels
,
32
(
12
), pp.
12962
12970
.
34.
Wen
,
Z.
,
Yun
,
S.
,
Thomson
,
M. J.
, and
Lightstone
,
M. F.
,
2003
, “
Modeling Soot Formation in Turbulent Kerosene/Air Jet Diffusion Flames
,”
Combust. Flame
,
135
(
3
), pp.
323
340
.
35.
Fenimore
,
C. P.
, and
Jones
,
G. W.
,
1967
, “
Oxidation of Soot by Hydroxyl Radicals
,”
J. Phys. Chem.
,
71
(
3
), pp.
593
597
.
36.
Cellek
,
M. S.
,
2022
, “
The Decreasing Effect of Ammonia Enrichment on the Combustion Emission of Hydrogen, Methane, and Propane Fuels
,”
Int. J. Hydrogen Energy
,
47
(
45
), pp.
19916
19934
.
37.
Charest
,
M. R. J.
,
Groth
,
C. P. T.
, and
Gülder
,
ÖL
,
2011
, “
Effects of Gravity and Pressure on Laminar Coflow Methane–Air Diffusion Flames at Pressures From 1 to 60 Atmospheres
,”
Combust. Flame
,
158
(
5
), pp.
860
875
.
38.
Zhang
,
D.
,
Fang
,
J.
,
Guan
,
J.
,
Wang
,
J.
,
Zeng
,
Y.
,
Wang
,
J.
, and
Zhang
,
Y.
,
2014
, “
Laminar Jet Methane/Air Diffusion Flame Shapes and Radiation of Low Air Velocity Coflow in Microgravity
,”
Fuel
,
130
, pp.
25
33
.
39.
Lou
,
C.
,
Li
,
Z.
,
Zhang
,
Y.
, and
Kumfer
,
B. M.
,
2021
, “
Soot Formation Characteristics in Laminar Coflow Flames With Application to Oxy-Combustion
,”
Combust. Flame
,
227
, pp.
371
383
.
40.
Liu
,
Y.
,
Cheng
,
X.
,
Qin
,
L.
,
Wang
,
X.
,
Yao
,
J.
, and
Wu
,
H.
,
2020
, “
Experimental Investigation on Soot Formation Characteristics of n-Heptane/Butanol Isomers Blends in Laminar Diffusion Flames
,”
Energy
,
211
, p.
118714
.
41.
Wang
,
Q.
,
Legros
,
G.
,
Bonnety
,
J.
, and
Morin
,
C.
,
2017
, “
Experimental Characterization of the Different Nitrogen Dilution Effects on Soot Formation in Ethylene Diffusion Flames
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
3227
3235
.
42.
Kashif
,
M.
,
Guibert
,
P.
,
Bonnety
,
J.
, and
Legros
,
G.
,
2014
, “
Sooting Tendencies of Primary Reference Fuels in Atmospheric Laminar Diffusion Flames Burning Into Vitiated Air
,”
Combust. Flame
,
161
(
6
), pp.
1575
1586
.
43.
Liu
,
F.
,
He
,
X.
,
Ma
,
X.
,
Zhang
,
Q.
,
Thomson
,
M. J.
,
Guo
,
H.
,
Smallwood
,
G. J.
,
Shuai
,
S.
, and
Wang
,
J.
,
2011
, “
An Experimental and Numerical Study of the Effects of Dimethyl Ether Addition to Fuel on Polycyclic Aromatic Hydrocarbon and Soot Formation in Laminar Coflow Ethylene/Air Diffusion Flames
,”
Combust. Flame
,
158
(
3
), pp.
547
563
.
44.
Bowen
,
L.
,
Chengjing
,
W.
,
Yindi
,
Z.
,
Bing
,
L.
,
Fanjin
,
Z.
,
Takyi
,
S. A.
, and
Tontiwachwuthikuld
,
P.
,
2022
, “
Effect of CO2/H2O Addition on Laminar Diffusion Flame Structure and Soot Formation of Oxygen-Enriched Ethylene
,”
J. Energy Inst.
,
102
, pp.
160
175
.
45.
Cepeda
,
F.
,
Jerez
,
A.
,
Demarco
,
R.
,
Liu
,
F.
, and
Fuentes
,
A.
,
2019
, “
Influence of Water-Vapor in Oxidizer Stream on the Sooting Behavior for Laminar Coflow Ethylene Diffusion Flames
,”
Combust. Flame
,
210
, pp.
114
125
.
46.
Zou
,
C.
,
Song
,
Y.
,
Li
,
G.
,
Cao
,
S.
,
He
,
Y.
, and
Zheng
,
C.
,
2014
, “
The Chemical Mechanism of Steam's Effect on the Temperature in Methane Oxy-Steam Combustion
,”
Int. J. Heat Mass Transfer
,
75
, pp.
12
18
.
47.
Liu
,
F.
,
Ai
,
Y.
, and
Kong
,
W.
,
2014
, “
Effect of Hydrogen and Helium Addition to Fuel on Soot Formation in an Axisymmetric Coflow Laminar Methane/Air Diffusion Flame
,”
Int. J. Hydrogen Energy
,
39
(
8
), pp.
3936
3946
.
48.
Khosousi
,
A.
, and
Dworkin
,
S. B.
,
2015
, “
Soot Surface Reactivity During Surface Growth and Oxidation in Laminar Diffusion Flames
,”
Combust. Flame
,
162
(
12
), pp.
4523
4532
.
49.
Won
,
D. C
, and
Lee
,
Y. H
,
1996
,
Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation
, Springer.
50.
Khosousi
,
A.
, and
Dworkin
,
S. B.
,
2015
, “
Detailed Modelling of Soot Oxidation by O2 and OH in Laminar Diffusion Flames
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1903
1910
.
51.
Zhang
,
M.
,
Ong
,
J. C.
,
Pang
,
K. M.
,
Bai
,
X.-S.
, and
Walther
,
J. H.
,
2022
, “
Effects of Ambient CO2 and H2O on Soot Processes in n-Dodecane Spray Combustion Using Large Eddy Simulation
,”
Fuel
,
312
, p.
122700
.
52.
Wu
,
Y.
,
Liu
,
F.
,
Sun
,
Y.
, and
Zhu
,
B.
,
2019
, “
Effects of Carbon Dioxide and Water Vapor Addition on Benzene and PAH Formation in a Laminar Premixed CH4/O2/Ar Flame
,”
Combust. Sci. Technol.
,
191
(
10
), pp.
1866
1897
.
53.
Wang
,
Y.
,
Gu
,
M.
,
Zhu
,
Y.
,
Cao
,
L.
,
Zhu
,
B.
,
Wu
,
J.
,
Lin
,
Y.
, and
Huang
,
X.
,
2021
, “
A Review of the Effects of Hydrogen, Carbon Dioxide, and Water Vapor Addition on Soot Formation in Hydrocarbon Flames
,”
Int. J. Hydrogen Energy
,
46
(
61
), pp.
31400
31427
.
You do not currently have access to this content.