Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This article presents a comprehensive study of a double-acting cylinder (DAC) energy recovery device (ERD). The DAC was specifically designed, manufactured, and experimentally tested within a small-scale 5 m3/day brackish water reverse osmosis (RO) unit. The distinctive advantage of the DAC lies in its ability to operate without an extra booster pump, thereby reducing initial costs and streamlining system complexity. A comparative analysis was conducted between the station operating without any ERD and the station equipped with a DAC. For both scenarios, a parametric study was carried out to analyze the relationship between specific energy consumption (SEC) and recovery ratio at varying recovery percentages (10%, 15%, 20%, 25%, and 30%) for different salinity levels. This analysis was conducted across various feed flowrates, with the percentage reduction in SEC calculated for each case. The results show the DAC's ability to effectively reduce the SEC by up to 40%. Additionally, the study investigated brine-feed stream mixing within the DAC, highlighting its capability to prevent undesirable mixing despite internal leakage. However, its widespread adoption has been hindered by realizable pressure fluctuations associated with its implementation, which can lead to rapid fatigue failure. To address this issue, a direct-contact air vessel was integrated into the system to minimize pressure fluctuations and enhance the performance of the DAC. Its optimal size was determined through numerical analysis using the method of characteristics, with detailed design equations presented for future reference. The results affirm the indispensable function of the air vessel in attenuating unsteady effects.

References

1.
Kalogirou
,
S. A.
,
2005
, “
Seawater Desalination Using Renewable Energy Sources
,”
Prog. Energy Combust. Sci.
,
31
(
3
), pp.
242
281
.
2.
S
,
M. S.
,
Elmakki
,
T.
,
Schipper
,
K.
,
Ihm
,
S.
,
Yoo
,
Y.
,
Park
,
B.
,
Park
,
H.
,
Shon
,
H. K.
, and
Han
,
D. S.
,
2024
, “
Integrated Seawater Hub: A Nexus of Sustainable Water, Energy, and Resource Generation
,”
Desalination
,
571
, p.
117065
.
3.
Al-Obaidi
,
M. A.
,
Ruiz-García
,
A.
,
Hassan
,
G.
,
Li
,
J.-P.
,
Kara-Zaïtri
,
C.
,
Nuez
,
I.
, and
Mujtaba
,
I. M.
,
2021
, “
Model Based Simulation and Genetic Algorithm Based Optimisation of Spiral Wound Membrane RO Process for Improved Dimethylphenol Rejection From Wastewater
,”
Membranes
,
11
(
8
), p.
595
.
4.
Morosuk
,
T.
, and
Cao
,
W.
,
2024
, “
Carbon Footprint of Seawater Desalination Technologies: A Review
,”
ASME J. Energy Resour. Technol.
,
146
(
8
), p.
080801
.
5.
Ziviani
,
D.
,
Beyene
,
A.
, and
Venturini
,
M.
,
2014
, “
Design, Analysis and Optimization of a Micro-CHP System Based on Organic Rankine Cycle for Ultralow Grade Thermal Energy Recovery
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
011602
.
6.
Kowalski
,
G. J.
,
Modaresifar
,
M.
, and
Zenouzi
,
M.
,
2015
, “
Significance of Transient Exergy Terms in a New Tray Design Solar Desalination Device
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
011201
.
7.
Karabelas
,
A.
,
Koutsou
,
C.
,
Kostoglou
,
M.
, and
Sioutopoulos
,
D.
,
2018
, “
Analysis of Specific Energy Consumption in Reverse Osmosis Desalination Processes
,”
Desalination
,
431
, pp.
15
21
.
8.
Arias
,
F. J.
,
2018
, “
Deliberate Salinization of Seawater for Desalination of Seawater
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032004
.
9.
Gude
,
V. G.
,
2011
, “
Energy Consumption and Recovery in Reverse Osmosis
,”
Desalin. Water Treat.
,
36
(
1–3
), pp.
239
260
.
10.
Badruzzaman
,
M.
,
Voutchkov
,
N.
,
Weinrich
,
L.
, and
Jacangelo
,
J. G.
,
2019
, “
Selection of Pretreatment Technologies for Seawater Reverse Osmosis Plants: A Review
,”
Desalination
,
449
, pp.
78
91
.
11.
Davies
,
P.
,
Afifi
,
A.
,
Khatoon
,
F.
,
Kuldip
,
G.
,
Javed
,
S.
, and
Khan
,
S.
,
2016
, “
Double-Acting Batch-RO System for Desalination of Brackish Water with High Efficiency and High Recovery
,”
Desalin. Environ.
,
224
, pp.
23
25
.
12.
Khalifa
,
A. J. N.
,
2011
, “
Evaluation of Different Hybrid Power Scenarios to Reverse Osmosis (RO) Desalination Units in Isolated Areas in Iraq
,”
Energy Sustainable Dev.
,
15
(
1
), pp.
49
54
.
13.
Sutariya
,
B.
,
2023
, “
A Mathematical Investigation Into the Limited Use of Energy Recovery Devices in Brackish Water Reverse Osmosis Processes
,”
Chem. Pap.
,
77
(
10
), pp.
6409
6418
.
14.
Swidan
,
M. A.
,
Rabie
,
M. G. E.-D.
,
Hassan
,
M. A.
, and
Adam
,
I. G.
,
2024
, “
Experimental Study of a Booster Pump-Free Isobaric Energy Recovery Device (DAC) for Reverse Osmosis: Performance Evaluation and Comparison
,”
Desalination
,
576
, p.
117345
.
15.
Urrea
,
S. A.
,
Reyes
,
F. D.
,
Suárez
,
B. P.
, and
de la Fuente Bencomo
,
J. A.
,
2019
, “
Technical Review, Evaluation and Efficiency of Energy Recovery Devices Installed in the Canary Islands Desalination Plants
,”
Desalination
,
450
, pp.
54
63
.
16.
Ning
,
Y.
,
Zhang
,
D.
,
Li
,
Y.
,
Ye
,
X.
, and
Ding
,
J.
,
2024
, “
Effect of Surface Roughness on Lubrication Performance of Water-Lubricated Bearing for Energy Recovery Turbocharger
,”
J. Phys.: Conf. Ser.
,
2707
(
1
), p.
012116
.
17.
Wang
,
C.
,
Wang
,
S.
,
Wang
,
K.
,
Xiao
,
Y.
,
Ma
,
Q.
,
Song
,
D.
,
Wang
,
R.
, and
Zhang
,
Y.
,
2024
, “
Developmental Impediment and Prospective Trends of Desalination Energy Recovery Device
,”
Desalination
,
578
, p.
117465
.
18.
Alsarayreh
,
A. A.
,
Al-Obaidi
,
M.
,
Al-Hroub
,
A.
,
Patel
,
R.
, and
Mujtaba
,
I. M.
,
2020
, “
Evaluation and Minimisation of Energy Consumption in a Medium-Scale Reverse Osmosis Brackish Water Desalination Plant
,”
J. Cleaner Prod.
,
248
, p.
119220
.
19.
Lou
,
F.
,
Nie
,
S.
,
Yin
,
F.
,
Lu
,
W.
,
Ji
,
H.
,
Ma
,
Z.
, and
Kong
,
X.
,
2022
, “
Numerical and Experimental Research on the Integrated Energy Recovery and Pressure Boost Device for Seawater Reverse Osmosis Desalination System
,”
Desalination
,
523
, p.
115408
.
20.
Lu
,
Y.
,
Zhao
,
Y.
,
Bu
,
G.
, and
Shu
,
P.
,
2011
, “
The Integration of Water Vane Pump and Hydraulic Vane Motor for a Small Desalination System
,”
Desalination
,
276
(
1–3
), pp.
60
65
.
21.
Kim
,
J.
,
Park
,
K.
, and
Hong
,
S.
,
2020
, “
Optimization of Two-Stage Seawater Reverse Osmosis Membrane Processes With Practical Design Aspects for Improving Energy Efficiency
,”
J. Membr. Sci.
,
601
, p.
117889
.
22.
Kariman
,
H.
,
Shafieian
,
A.
, and
Khiadani
,
M.
,
2023
, “
Small Scale Desalination Technologies: A Comprehensive Review
,”
Desalination
,
567
, p.
116985
.
23.
Mohamed
,
E. S.
,
Papadakis
,
G.
,
Mathioulakis
,
E.
, and
Belessiotis
,
V.
,
2006
, “
An Experimental Comparative Study of the Technical and Economic Performance of a Small Reverse Osmosis Desalination System Equipped With an Hydraulic Energy Recovery Unit
,”
Desalination
,
194
(
1–3
), pp.
239
250
.
24.
Song
,
J.
,
Li
,
T.
,
Wright-Contreras
,
L.
, and
Law
,
A. W.-K.
,
2017
, “
A Review of the Current Status of Small-Scale Seawater Reverse Osmosis Desalination
,”
Water Int.
,
42
(
5
), pp.
618
631
.
25.
Mirza
,
S.
,
2008
, “
Reduction of Energy Consumption in Process Plants Using Nanofiltration and Reverse Osmosis
,”
Desalination
,
224
(
1–3
), pp.
132
142
.
26.
Hopkins
,
B. J.
,
Padhye
,
N.
,
Greenlee
,
A.
,
Torres
,
J.
,
Thomas
,
L.
,
Ljubicic
,
D. M.
,
Kassner
,
M. P.
, and
Slocum
,
A. H.
,
2014
, “
Damping Pressure Pulsations in a Wave-Powered Desalination System
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021205
.
27.
Larock
,
B. E.
,
Jeppson
,
R. W.
, and
Watters
,
G. Z.
,
1999
,
Hydraulics of Pipeline Systems
,
CRC Press
,
Boca Raton, FL
.
28.
Thorley
,
A. D.
,
2004
,
Fluid Transients in Pipeline Systems: a Guide to the Control and Suppression of Fluid Transients in Liquids in Closed Conduits
,
ASME Press
,
New York
.
29.
Martin
,
N.
, and
Wahba
,
E.
,
2022
, “
On the Hierarchy of Models for Pipe Transients: From Quasi-Two-Dimensional Water Hammer Models to Full Three-Dimensional Computational Fluid Dynamics Models
,”
ASME J. Pressure Vessel Technol.
,
144
(
2
), p.
021402
.
30.
Warda
,
H.
,
Wahba
,
E.
, and
El-Din
,
M. S.
,
2020
, “
Computational Fluid Dynamics (CFD) Simulation of Liquid Column Separation in Pipe Transients
,”
Alexandria Eng. J.
,
59
(
5
), pp.
3451
3462
.
31.
Wahba
,
E.
,
2006
, “
Runge–Kutta Time-Stepping Schemes With TVD Central Differencing for the Water Hammer Equations
,”
Int. J. Numer. Methods Fluids
,
52
(
5
), pp.
571
590
.
32.
Salmanzadeh
,
M.
, and
Torf
,
S.
,
2011
, “
Analysis of Surge in Pipelines Systems by Characteristis Method
,”
Int. J. Mech.
,
2
(
5
), pp.
83
90
.
33.
Wichowski
,
R.
,
2006
, “
Hydraulic Transients Analysis in Pipe Networks by the Method of Characteristics (MOC)
,”
Arch. Hydro-Eng. Environ. Mech.
,
53
(
3
), pp.
267
291
.
34.
Joseph
,
S.
,
1984
, “
Fatigue Failure and Service Lifetimes in uPVC Pressure Pipes
,”
Plast. Rubber Process. Appl.
,
4
(
4
), pp.
325
330
.
You do not currently have access to this content.