Abstract

The safety problem of large-size drilling tools in large-size boreholes has become increasingly prominent with the exploration and development of deep and ultradeep wells. This study analyzes the causes of large-size drilling tool failures from the engineering point of view via statistical analysis, experimental material test, and vibration and bending analyses. Results show that the violent downhole vibration changes the drilling tool's mechanical properties. These changes result in an uneven distribution of hardness and reduced impact work, finally leading to the initiation of fatigue cracks at stress concentration points. Drilling tool bending is closely related to drilling parameters and bottom hole assembly (BHA) configuration. Unreasonable BHA configuration and drilling parameters increase BHA bending and accelerate fatigue failure. Once a crack is generated, the corrosive ions in water-based drilling fluids invade the microcrack, causing the corrosion of the drilling tool material. As a result, the strength is reduced, and the fracture is aggravated. Therefore, measures for preventing the failure of large-size drilling tools are proposed. We hope that the results of this work can provide useful guidance for drilling engineers.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Zhang
,
B.
,
Lu
,
N.
,
Guo
,
Y.
,
Wang
,
Q.
,
Cai
,
M.
, and
Lou
,
E.
,
2022
, “
Modeling and Analysis of Sustained Annular Pressure and Gas Accumulation Caused by Tubing Integrity Failure in the Production Process of Deep Natural Gas Wells
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
063005
.
2.
Abdo
,
J.
, and
Haneef
,
M. D.
,
2022
, “
Nanomaterials Modified Drilling Fluid for Improving Deep Drilling Conditions
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
073202
.
3.
Abbas
,
A. K.
,
Rushdi
,
S.
,
Alsaba
,
M.
, and
Al Dushaishi
,
M. F.
,
2019
, “
Drilling Rate of Penetration Prediction of High-Angled Wells Using Artificial Neural Networks
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112904
.
4.
Dehghan
,
S.
,
Ismail
,
M. I. S. B.
, and
Souri
,
E.
,
2020
, “
A Thermo-Mechanical Finite Element Simulation Model to Analyze Bushing Formation and Drilling Tool for Friction Drilling of Difficult-to-Machine Materials
,”
J. Manuf. Process.
,
57
(
1
), pp.
1004
1018
.
5.
Bernd Reinboth
,
A. O. D.
,
2009
, “
Visual Road Map Helps Control Drilling Process
,”
Oil Gas J.
,
107
(
29
), pp.
41
42
.
6.
Domínguez-Monferrer
,
C.
,
Guerra-Sancho
,
A.
,
Caggiano
,
A.
,
Nele
,
L.
,
Miguélez
,
M. H.
, and
Cantero
,
J. L.
,
2024
, “
Multiresolution Analysis for Tool Failure Detection in CFRP/Ti6Al4V Hybrid Stacks Drilling in Aircraft Assembly Lines
,”
Mech. Syst. Signal Process
,
206
(
1
), p.
110925
.
7.
Di
,
Q.
,
Qin
,
K.
,
Chen
,
T.
,
Liu
,
B.
,
Li
,
S.
,
Zhou
,
X.
,
Wang
,
W.
,
Chen
,
F.
, and
Zhang
,
H.
,
2021
, “
An Innovative Method for Studying the Dynamic Failure Mechanism of Box Connection of Stabilizer in Large Diameter Wellbore of Ultra-Deep Wells
,”
J. Petrol. Sci. Eng.
,
205
(
3
), p.
108822
.
8.
Luo
,
S.
, and
Wu
,
S.
,
2013
, “
Effect of Stress Distribution on the Tool Joint Failure of Internal and External Upset Drill Pipes
,”
Mater. Des.
,
52
(
6
), pp.
308
314
.
9.
Cheng
,
J.
,
Sun
,
Y.
,
Yu
,
Y.
,
Wu
,
J.
,
Chen
,
L.
, and
Liu
,
J.
,
2022
, “
Effect of Interference Magnitude on Ultimate Strength and Failure Analysis of Aluminium-Drill-Pipe-Body-Tool-Joint-Assemblies With Johnson-Cook Model
,”
Eng. Fail. Anal.
,
137
(
11
), p.
106281
.
10.
Shen
,
D.
,
Tong
,
K.
,
Fan
,
Z.
,
Yang
,
W.
,
Liu
,
Q.
,
Li
,
H.
,
Zhao
,
J.
, and
Cong
,
S.
,
2023
, “
Failure Analysis of S135 Drill Pipe Body Fracture in a Well
,”
Eng. Fail. Anal.
,
145
(
8
), p.
106998
.
11.
Ranjbar
,
K.
, and
Sababi
,
M.
,
2012
, “
Failure Assessment of the Hard Chrome Coated Rotors in the Downhole Drilling Motors
,”
Eng. Fail. Anal.
,
20
(
9
), pp.
147
155
.
12.
Moradi
,
A. S.
, and
Ranjbar
,
K.
,
2009
, “
Experimental and Computational Failure Analysis of Drill Strings
,”
Eng. Fail. Anal.
,
16
(
3
), pp.
923
933
.
13.
Wang
,
R.
,
Zang
,
R.
,
Bu
,
R.
, and
Bu
,
Y.
,
2011
, “
Drill String Failure Analysis and Its Prevention in Northeast Sichuan, China
,”
Eng. Fail. Anal.
,
18
(
4
), pp.
1233
1241
.
14.
Kumar
,
A.
, and
Samuel
,
R.
,
2014
, “
Analytical Model to Characterize “Smear Effect” Observed While Drilling With Casing
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
033101
.
15.
Saadeldin
,
R.
,
Gamal
,
H.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2022
, “
Intelligent Model for Predicting Downhole Vibrations Using Surface Drilling Data During Horizontal Drilling
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
083002
.
16.
Jogi
,
P. N.
,
Macpherson
,
J. D.
, and
Neubert
,
M.
,
2002
, “
Field Verification of Model-Derived Natural Frequencies of a Drill String
,”
ASME J. Energy Resour. Technol.
,
124
(
3
), pp.
154
162
.
17.
CSN EN ISO 11960-2011
. Petroleum and Natural Gas Industries—Steel Pipes for Use as Casing or Tubing for Wells (ISO 11960:2011) [S].
18.
Dian-Ao
,
G.
,
2006
, “
Analysis of SY/T 5144—1997 Standard
,”
Nondestr. Test.
,
28
(
3
), p.
3
. .
19.
Ghasemloonia
,
A.
,
Geoff Rideout
,
D.
, and
Butt
,
S. D.
,
2013
, “
Vibration Analysis of a Drill String in Vibration-Assisted Rotary Drilling: Finite Element Modeling With Analytical Validation
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032902
.
20.
Plácido
,
J. C. R.
,
Santos
,
H. M. R.
, and
Galeano
,
Y. D.
,
2002
, “
Drill String Vibration and Wellbore Instability
,”
ASME J. Energy Resour. Technol.
,
124
(
4
), pp.
217
222
.
21.
Cai
,
M.
,
Mao
,
D.
,
Li
,
X.
,
Peng
,
H.
,
Tan
,
L.
,
Gui
,
Y.
, and
Yin
,
X.
,
2023
, “
Downhole Vibration Characteristics of 3D Curved Well Under Drill String–Bit–Rock Interaction
,”
Int. J. Non-Linear Mech.
,
154
(
10
), p.
104430
.
You do not currently have access to this content.