Abstract

The reduction of NOx emissions is a paramount endeavor in contemporary engineering and energy production, as these emissions are closely linked to adverse environmental and health impacts. The prediction of NOx emission from gas turbines through several integrated data-driven machine learning methods has been evaluated in study. The study compares the performance of ensemble and conventional machine learning models, demonstrating superior accuracy achieved by the ensemble models. Specifically, the Random Forest model achieved an accuracy rate of 91.68%, XGBoost yielded an accuracy of 91.54%, and CATBoost exhibited the highest accuracy at 92.76%. These findings highlight the capability of data-driven machine learning techniques in enhancing NOx emission predictions in gas turbines. The improved prediction by ensembles can be utilized in the development and implementation of more effective control and mitigation strategies in practical applications. Through the application of these advanced machine learning approaches, the gas turbine industry can play a pivotal role in minimizing its environmental impact while optimizing operational efficiency. This study also provides valuable insights into the effectiveness of ensemble machine learning models, advancing our understanding of their capabilities in addressing the critical issue of NOx emissions from gas turbines.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Haque
,
M. A.
,
Nemitallah
,
M. A.
,
Abdelhafez
,
A.
,
Mansir
,
I. B.
, and
Habib
,
M. A.
,
2020
, “
Review of Fuel/Oxidizer-Flexible Combustion in Gas Turbines
,”
Energy Fuels
,
34
(
9
), pp.
10459
10485
.
2.
Al-Malak
,
A.
,
Elshafei
,
M.
,
Habib
,
M. A.
, and
Al-Zaharnah
,
I.
,
2016
, “
Soft Analyzer for Monitoring NOx Emissions From a Gas Turbine Combustor
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
031101
.
3.
Nondy
,
J.
, and
Gogoi
,
T. K.
,
2021
, “
A Comparative Study of Metaheuristic Techniques for the Thermoenvironomic Optimization of a Gas Turbine-Based Benchmark Combined Heat and Power System
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
062104
.
4.
Ahmad
,
A. L.
,
Azid
,
I. A.
,
Yusof
,
A. R.
, and
Seetharamu
,
K. N.
,
2004
, “
Emission Control in Palm Oil Mills Using Artificial Neural Network and Genetic Algorithm
,”
Comput. Chem. Eng.
,
28
(
12
), pp.
2709
2715
.
5.
Vanderhaegen
,
E.
,
Deneve
,
M.
,
Laget
,
H.
,
Faniel
,
N.
, and
Mertens
,
J.
,
2010
, “
Predictive Emissions Monitoring Using a Continuously Updating Neural Network
,”
ASME Turbo Expo 2010: Power for Land, Sea, and Air
,
Glasgow, UK
,
June 14–18
.
6.
Vo
,
N. D.
,
Oh
,
D. H.
,
Hong
,
S.-H.
,
Oh
,
M.
, and
Lee
,
C.-H.
,
2019
, “
Combined Approach Using Mathematical Modelling and Artificial Neural Network for Chemical Industries: Steam Methane Reformer
,”
Appl. Energy
,
255
, p.
113809
.
7.
Petro
,
N.
, and
Lopez
,
F.
,
2022
, “
Machine Learning-Based Digital Twins Reduce Seasonal Remapping in Aeroderivative Gas Turbines
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032105
.
8.
Badra
,
J. A.
, et al
,
2021
, “
Engine Combustion System Optimization Using Computational Fluid Dynamics and Machine Learning: A Methodological Approach
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022306
.
9.
Zhang
,
Y.
, et al
,
2022
, “
The Prediction of Spark-Ignition Engine Performance and Emissions Based on the SVR Algorithm
,”
Processes
,
10
(
2
), p.
312
.
10.
Zheng
,
L.-G.
,
Zhou
,
H.
,
Cen
,
K.-F.
, and
Wang
,
C.-L.
,
2009
, “
A Comparative Study of Optimization Algorithms for Low NOx Combustion Modification at a Coal-Fired Utility Boiler
,”
Expert Syst. Appl.
,
36
(
2
), pp.
2780
2793
.
11.
Liu
,
H.
,
Li
,
Q.
,
Yu
,
D.
, and
Gu
,
Y.
,
2019
, “
Air Quality Index and Air Pollutant Concentration Prediction Based on Machine Learning Algorithms
,”
Appl. Sci.
,
9
(
19
), p.
4069
.
12.
Tuttle
,
J. F.
,
Blackburn
,
L. D.
, and
Powell
,
K. M.
,
2020
, “
On-Line Classification of Coal Combustion Quality Using Nonlinear SVM for Improved Neural Network NOx Emission Rate Prediction
,”
Comput. Chem. Eng.
,
141
, p.
106990
.
13.
Lv
,
Y.
,
Liu
,
J.
,
Yang
,
T.
, and
Zeng
,
D.
,
2013
, “
A Novel Least Squares Support Vector Machine Ensemble Model for NOx Emission Prediction of a Coal-Fired Boiler
,”
Energy
,
55
, pp.
176
183
.
14.
Jain
,
A.
, and
Lella
,
R. L.
, “
Pearson Correlation Coefficient Based Attribute Weighted k-NN for Air Pollution Prediction
,”
Proceedings of the 2020 IEEE 17th India Council International Conference (INDICON)
,
Dec. 2020
. pp.
1
8
.
15.
Korpela
,
T.
,
Kumpulainen
,
P.
,
Majanne
,
Y.
, and
Häyrinen
,
A.
,
2015
, “
Model Based NOx Emission Monitoring in Natural Gas Fired Hot Water Boilers
,”
IFAC-PapersOnLine
,
48
(
30
), pp.
385
390
.
16.
Si
,
M.
, and
Du
,
K.
,
2020
, “
Development of a Predictive Emissions Model Using a Gradient Boosting Machine Learning Method
,”
Environ. Technol. Innov.
,
20
, p.
101028
.
17.
Duan
,
H.
,
Huang
,
Y.
,
Mehra
,
R. K.
,
Song
,
P.
, and
Ma
,
F.
,
2018
, “
Study on Influencing Factors of Prediction Accuracy of Support Vector Machine (SVM) Model for NOx Emission of a Hydrogen Enriched Compressed Natural Gas Engine
,”
Fuel
,
234
, pp.
954
964
.
18.
Tan
,
P.
,
Zhang
,
C.
,
Xia
,
J.
,
Fang
,
Q.
, and
Chen
,
G.
,
2016
, “
NOX Emission Model for Coal-Fired Boilers Using Principle Component Analysis and Support Vector Regression
,”
J. Chem. Eng. Japan
,
49
(
2
), pp.
211
216
.
19.
Kaya
,
H.
,
Tüfekci
,
P.
, and
Uzun
,
E.
,
2019
, “
Predicting CO and NOx Emissions From Gas Turbines: Novel Data and A Benchmark PEMS
,”
Turkish J. Electr. Eng. Comput. Sci.
,
27
(
6
), pp.
4783
4796
.
20.
Kochueva
,
O.
, and
Nikolskii
,
K.
,
2021
, “
Data Analysis and Symbolic Regression Models for Predicting CO and NOx Emissions From Gas Turbines
,”
Computation
,
9
(
12
), p.
139
.
21.
Azzam
,
M.
,
Awad
,
M.
, and
Zeaiter
,
J.
,
2018
, “
Application of Evolutionary Neural Networks and Support Vector Machines to Model NOx Emissions From gas Turbines
,”
J. Environ. Chem. Eng.
,
6
(
1
), pp.
1044
1052
.
22.
Tang
,
Z.
,
Wu
,
X.
, and
Cao
,
S.
,
2019
, “
Adaptive Nonlinear Model Predictive Control of the Combustion Efficiency Under the NOx Emissions and Load Constraints
,”
Energies
,
12
(
9
), p.
1738
.
23.
Lauer
,
M.
,
Färber
,
J.
,
Reiß
,
F.
, and
El Masalme
,
J.
,
2017
, “
Model Based Prediction of Off-Design Operation Condition NOx Emission From DLE Gas Turbine Combustors
,”
24.
Pires
,
T. S.
,
Cruz
,
M. E.
,
Colaço
,
M. J.
, and
Alves
,
M. A. C.
,
2018
, “
Application of Nonlinear Multivariable Model Predictive Control to Transient Operation of a Gas Turbine and NOX Emissions Reduction
,”
Energy
,
149
, pp.
341
353
.
25.
Lamont
,
W. G.
,
Roa
,
M.
, and
Lucht
,
R. P.
,
2014
, “
Application of Artificial Neural Networks for the Prediction of Pollutant Emissions and Outlet Temperature in a Fuel-Staged Gas Turbine Combustion Rig
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20
.
26.
Kroniger
,
D.
,
Lipperheide
,
M.
, and
Wirsum
,
M.
,
2017
, “
Effects of Hydrogen Fueling on NOx Emissions: A Reactor Model Approach for an Industrial Gas Turbine Combustor
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
.
27.
Cuccu
,
G.
,
Danafar
,
S.
,
Cudre-Mauroux
,
P.
,
Gassner
,
M.
,
Bernero
,
S.
, and
Kryszczuk
,
K.
,
2017
, “
A Data-Driven Approach to Predict NOx-Emissions of Gas Turbines
,”
Proceedings of the 2017 IEEE International Conference on Big Data (Big Data)
,
Boston, MA
,
Dec. 11–14
.
28.
Manasis
,
C.
,
Assimakis
,
N.
,
Vikias
,
V.
,
Ktena
,
A.
, and
Stamatelos
,
T.
,
2020
, “
Power Generation Prediction of an Open Cycle Gas Turbine Using Kalman Filter
,”
Energies
,
13
(
24
), p.
6692
.
29.
Giunta
,
G.
,
Vernazza
,
R.
,
Salerno
,
R.
,
Ceppi
,
A.
,
Ercolani
,
G.
, and
Mancini
,
M.
,
2017
, “
Hourly Weather Forecasts for Gas Turbine Power Generation
,”
Meteorol. Zeitschrift
,
26
(
3
), pp.
307
317
.
30.
Yang
,
G.
,
Wang
,
Y.
, and
Li
,
X.
,
2020
, “
Prediction of the NOx Emissions From Thermal Power Plant Using Long-Short Term Memory Neural Network
,”
Energy
,
192
, p.
116597
.
31.
Yuan
,
Z.
,
Meng
,
L.
,
Gu
,
X.
,
Bai
,
Y.
,
Cui
,
H.
, and
Jiang
,
C.
,
2021
, “
Prediction of NOx Emissions for Coal-Fired Power Plants With Stacked-Generalization Ensemble Method
,”
Fuel
,
289
, p.
119748
.
32.
Le Cornec
,
C. M. A.
,
Molden
,
N.
,
van Reeuwijk
,
M.
, and
Stettler
,
M. E. J.
,
2020
, “
Modelling of Instantaneous Emissions From Diesel Vehicles With a Special Focus on NOx: Insights From Machine Learning Techniques
,”
Sci. Total Environ.
,
737
, p.
139625
.
33.
Fan
,
W.
,
Si
,
F.
,
Ren
,
S.
,
Yu
,
C.
,
Cui
,
Y.
, and
Wang
,
P.
,
2019
, “
Integration of Continuous Restricted Boltzmann Machine and SVR in NOx Emissions Prediction of a Tangential Firing Boiler
,”
Chemom. Intell. Lab. Syst.
,
195
, p.
103870
.
34.
Rai
,
A. A.
,
Pai
,
P. S.
, and
Rao
,
B. R. S.
,
2015
, “
Prediction Models for Performance and Emissions of a Dual Fuel CI Engine Using ANFIS
,”
Sadhana
,
40
(
2
), pp.
515
535
.
35.
Adams
,
D.
,
Oh
,
D.-H.
,
Kim
,
D.-W.
,
Lee
,
C.-H.
, and
Oh
,
M.
,
2020
, “
Prediction of SOx–NOx Emission From a Coal-Fired CFB Power Plant With Machine Learning: Plant Data Learned by Deep Neural Network and Least Square Support Vector Machine
,”
J. Clean. Prod.
,
270
, p.
122310
.
36.
Tuttle
,
J. F.
,
Vesel
,
R.
,
Alagarsamy
,
S.
,
Blackburn
,
L. D.
, and
Powell
,
K.
,
2019
, “
Sustainable NOx Emission Reduction at a Coal-Fired Power Station Through the Use of Online Neural Network Modeling and Particle Swarm Optimization
,”
Control Eng. Pract.
,
93
, p.
104167
.
37.
Li
,
G.-Q.
,
Qi
,
X.-B.
,
Chan
,
K. C. C.
, and
Chen
,
B.
,
2017
, “
Deep Bidirectional Learning Machine for Predicting NOx Emissions and Boiler Efficiency From a Coal-Fired Boiler
,”
Energy Fuels
,
31
(
10
), pp.
11471
11480
.
38.
Shi
,
Y.
,
Zhong
,
W.
,
Chen
,
X.
,
Yu
,
A. B.
, and
Li
,
J.
,
2019
, “
Combustion Optimization of Ultra Supercritical Boiler Based on Artificial Intelligence
,”
Energy
,
170
, pp.
804
817
.
39.
Wang
,
C.
,
Liu
,
Y.
,
Zheng
,
S.
, and
Jiang
,
A.
,
2018
, “
Optimizing Combustion of Coal Fired Boilers for Reducing NOx Emission Using Gaussian Process
,”
Energy
,
153
, pp.
149
158
.
40.
Tang
,
Z.
, and
Zhang
,
Z.
,
2019
, “
The Multi-Objective Optimization of Combustion System Operations Based on Deep Data-Driven Models
,”
Energy
,
182
, pp.
37
47
.
41.
Kotsiantis
,
S. B.
,
2013
, “
Decision Trees: A Recent Overview
,”
Artif. Intell. Rev.
,
39
(
4
), pp.
261
283
.
42.
Yan-yan Song
,
Y. L.
,
2015
, “
Decision Tree Methods: Applications for Classification and Prediction
,”
Shanghai Arch. Psychiatry
,
27
(
2
), pp.
130
135
.
43.
Zhang
,
F.
, and
O’Donnell
,
L. J.
,
2020
, “Support Vector Regression,”
Machine Learning
,
Elsevier
, pp.
123
140
.
44.
Awad
,
M.
, and
Khanna
,
R.
,
2015
, “Support Vector Regression,”
Efficient Learning Machines
,
Apress
,
Berkeley, CA
, pp.
67
80
.
45.
Schulz
,
E.
,
Speekenbrink
,
M.
, and
Krause
,
A.
,
2018
, “
A Tutorial on Gaussian Process Regression: Modelling, Exploring, and Exploiting Functions
,”
J. Math. Psychol.
,
85
, pp.
1
16
.
46.
Wilson
,
A. G.
,
Knowles
,
D. A.
, and
Ghahramani
,
Z.
,
2012
, “
Gaussian Process Regression Networks
,”
Proceedings of the 29th International Conference on Machine Learning
,
Edinburgh, Scotland, UK
,
June 26–July 1
.
47.
Guo
,
G.
,
Wang
,
H.
,
Bell
,
D.
,
Bi
,
Y.
, and
Greer
,
K.
,
2003
, “
KNN Model-Based Approach in Classification
,”
On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE
,
Catania, Sicily, Italy
,
Nov. 3–7
.
48.
Biau
,
G.
, and
Scornet
,
E.
,
2016
, “
A Random Forest Guided Tour
,”
TEST
,
25
(
2
), pp.
197
227
.
49.
Liu
,
J.
,
Huang
,
Q.
,
Ulishney
,
C.
, and
Dumitrescu
,
C. E.
,
2022
, “
Comparison of Random Forest and Neural Network in Modeling the Performance and Emissions of a Natural Gas Spark Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032310
.
50.
Cao
,
Y.
,
Miao
,
Q.-G.
,
Liu
,
J.-C.
, and
Gao
,
L.
,
2013
, “
Advance and Prospects of AdaBoost Algorithm
,”
Acta Autom. Sin.
,
39
(
6
), pp.
745
758
.
51.
Chen
,
T.
, and
Guestrin
,
C.
,
2016
, “
XGBoost: A Scalable Tree Boosting System
,”
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
San Francisco, CA, Aug. 13–17
.
52.
Ma
,
M.
, et al
,
2021
, “
XGBoost-Based Method for Flash Flood Risk Assessment
,”
J. Hydrol.
,
598
, p.
126382
.
53.
Hoque
,
K. E.
, and
Aljamaan
,
H.
,
2021
, “
Impact of Hyperparameter Tuning on Machine Learning Models in Stock Price Forecasting
,”
IEEE Access
,
9
, pp.
163815
163830
.
54.
Liu
,
J.
,
Ulishney
,
C.
, and
Dumitrescu
,
C. E.
,
2021
, “
Random Forest Machine Learning Model for Predicting Combustion Feedback Information of a Natural Gas Spark Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
012301
.
You do not currently have access to this content.