Abstract

Methanol (CH3OH) is emerging as a viable alternative to fossil-based fuels, addressing the increasing global energy demand while promoting sustainability. The spark ignition (SI) engines are widely used to run the automobile sector. Methanol as a widely available and cheap source of energy can be strongly replaced with expensive and limited fossil-based fuels to power the SI engines. The prime objective of this study is to evaluate the advancements made in improving the fuel blends, performance, combustion, and emission characteristics of methanol-fueled SI engines. The investigation commences by examining the various technical improvements implemented in methanol-fueled SI engines to optimize their overall performance. These developments include advancements in fuel blends, engine design, combustion strategies, fuel injection systems, ignition systems, engine load, etc. The impacts of these developments on the performance parameters including brake thermal efficiency, power output, torque, fuel efficiency, thermal efficiency, etc., combustion parameters including ignition delay, combustion duration, heat release rate, in-cylinder pressure and temperature, etc., emission parameters including hydrocarbon, carbon monoxide, nitrogen oxide, formaldehyde, unburned methanol, etc., is reviewed comprehensively. The effectiveness of emission control techniques and the potential for meeting stringent environmental regulations are explored. The review paper then considers the wider implications of methanol-fueled SI engines by examining their technical, environmental, economic, and renewable applications. The technical aspects cover the compatibility of methanol-fueled SI engines with existing infrastructure and the associated challenges and opportunities. The environmental considerations delve into the potential reduction of greenhouse gas emissions and the overall sustainability of methanol as a renewable fuel. Finally, the research direction of methanol SI engines is discussed, highlighting the emerging trends and prospects in this field. The review paper concludes with recommendations for further research and development, addressing the key areas that require attention to unlock the full potential of methanol as an efficient and sustainable fuel for SI engines.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Tian
,
Z.
,
Wang
,
Y.
,
Zhen
,
X.
, and
Liu
,
Z.
,
2022
, “
The Effect of Methanol Production and Application in Internal Combustion Engines on Emissions in the Context of Carbon Neutrality: A Review
,”
Fuel
,
320
, p.
123902
.
2.
Wang
,
L.
,
Chen
,
Z.
,
Zhang
,
T.
, and
Zeng
,
K.
,
2019
, “
Effect of Excess Air/Fuel Ratio and Methanol Addition on the Performance, Emissions, and Combustion Characteristics of a Natural Gas/Methanol Dual-Fuel Engine
,”
Fuel
,
255
, p.
115799
.
3.
Chen
,
Z.
,
Wang
,
L.
,
Zhang
,
Q.
,
Zhang
,
X.
,
Yang
,
B.
, and
Zeng
,
K.
,
2019
, “
Effects of Spark Timing and Methanol Addition on Combustion Characteristics and Emissions of Dual-Fuel Engine Fuelled With Natural Gas and Methanol Under Lean-Burn Condition
,”
Energy Convers. Manage.
,
181
, pp.
519
527
.
4.
Chen
,
Z.
,
Chen
,
H.
,
Wang
,
L.
,
Geng
,
L.
, and
Zeng
,
K.
,
2020
, “
Parametric Study on Effects of Excess Air/Fuel Ratio, Spark Timing, and Methanol Injection Timing on Combustion Characteristics and Performance of Natural Gas/Methanol Dual-Fuel Engine at Low Loads
,”
Energy Convers. Manage.
,
210
, p.
112742
.
5.
Bayraktar
,
H.
, and
Durgun
,
O.
,
2005
, “
Investigating the Effects of LPG on Spark Ignition Engine Combustion and Performance
,”
Energy Convers. Manage.
,
46
(
13–14
), pp.
2317
2333
.
6.
Tahir
,
M. M.
,
Ali
,
M. S.
,
Salim
,
M. A.
,
Bakar
,
R. A.
,
Fudhail
,
A. M.
,
Hassan
,
M. Z.
, and
Muhaimin
,
M. A.
,
2015
, “
Performance Analysis of a Spark Ignition Engine Using Compressed Natural Gas (CNG) as Fuel
,”
Energy Procedia
,
68
, pp.
355
362
.
7.
Karim
,
G.
,
2003
, “
Hydrogen as a Spark Ignition Engine Fuel
,”
Int. J. Hydrogen Energy
,
28
(
5
), pp.
569
577
.
8.
Szwaja
,
S.
, and
Naber
,
J. D.
,
2010
, “
Combustion of n-Butanol in a Spark-Ignition IC Engine
,”
Fuel
,
89
(
7
), pp.
1573
1582
.
9.
Qian
,
Y.
,
Guo
,
J.
,
Zhang
,
Y.
,
Tao
,
W.
, and
Lu
,
X.
,
2018
, “
Combustion and Emission Behavior of N-Propanol as Partially Alternative Fuel in a Direct Injection Spark Ignition Engine
,”
Appl. Therm. Eng.
,
144
, pp.
126
136
.
10.
Nakata
,
K.
,
Utsumi
,
S.
,
Ota
,
A.
,
Kawatake
,
K.
,
Kawai
,
T.
, and
Tsunooka
,
T.
,
2006
, “
The Effect of Ethanol Fuel on a Spark Ignition Engine
,” SAE Technical Paper Report No. 0148-719.
11.
Kowalewicz
,
A.
,
1993
, “
Methanol as a Fuel for Spark Ignition Engines: A Review and Analysis
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
207
(
1
), pp.
43
52
.
12.
Liu
,
Z.
,
Li
,
L.
,
Wang
,
H.
,
Deng
,
B.
,
Xiao
,
Z.
, and
Wang
,
Z.
,
2003
, “
Combustion and Emissions of Ethanol Fuel (E100) in a Small SI Engine
,” SAE Technical Paper Report No. 0148-7191.
13.
Demirbas
,
A.
,
2011
, “
Competitive Liquid Biofuels From Biomass
,”
Appl. Energy
,
88
(
1
), pp.
17
28
.
14.
Agarwal
,
A. K.
,
2007
, “
Biofuels (Alcohols and Biodiesel) Applications as Fuels for Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
33
(
3
), pp.
233
271
.
15.
Goldemberg
,
J.
,
2008
, “
The Challenge of Biofuels
,”
Energy Environ. Sci.
,
1
(
5
), pp.
523
525
.
16.
Koç
,
M.
,
Sekmen
,
Y.
,
Topgül
,
T.
, and
Yücesu
,
H. S.
,
2009
, “
The Effects of Ethanol–Unleaded Gasoline Blends on Engine Performance and Exhaust Emissions in a Spark-Ignition Engine
,”
Renewable Energy
,
34
(
10
), pp.
2101
2106
.
17.
Awad
,
O. I.
,
Mamat
,
R.
,
Ali
,
O. M.
,
Sidik
,
N. C.
,
Yusaf
,
T.
,
Kadirgama
,
K.
, and
Kettner
,
M.
,
2018
, “
Alcohol and Ether as Alternative Fuels in Spark Ignition Engine: A Review
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
2586
2605
.
18.
Awad
,
O. I.
,
Mamat
,
R.
,
Ibrahim
,
T. K.
,
Hammid
,
A. T.
,
Yusri
,
I. M.
,
Hamidi
,
M. A.
,
Humada
,
A. M.
, and
Yusop
,
A. F.
,
2018
, “
Overview of the Oxygenated Fuels in Spark Ignition Engine: Environmental and Performance
,”
Renewable Sustainable Energy Rev.
,
91
, pp.
394
408
.
19.
Kasibhatta
,
S.
,
2019
, “Alcohol Fuels as an Alternative Fuels-Bringing New Heights in Sustainability,”
Alcohol Fuels-Current Technologies and Future Prospect
,
Y.
Yun
, ed.,
IntechOpen
,
London, UK
.
20.
Chen
,
Z.
,
Wang
,
L.
,
Yuan
,
X.
,
Duan
,
Q.
,
Yang
,
B.
, and
Zeng
,
K.
,
2019
, “
Experimental Investigation on Performance and Combustion Characteristics of Spark-Ignition Dual-Fuel Engine Fueled With Methanol/Natural Gas
,”
Appl. Therm. Eng.
,
150
, pp.
164
174
.
21.
Astbury
,
G. R.
,
2008
, “
A Review of the Properties and Hazards of Some Alternative Fuels
,”
Process Saf. Environ. Prot.
,
86
(
6
), pp.
397
414
.
22.
Grabarczyk
,
M.
,
Teodorczyk
,
A.
,
Di Sarli
,
V.
, and
Di Benedetto
,
A.
,
2016
, “
Effect of Initial Temperature on the Explosion Pressure of Various Liquid Fuels and Their Blends
,”
Loss Prev. Process Ind.
,
44
, pp.
775
779
.
23.
Basco
,
A.
,
Cammarota
,
F.
,
Di Benedetto
,
A.
, and
Di
,
V.
,
2012
, “
Experimental and Numerical Analysis of Laminar Burning Velocity of Binary and Ternary Hydrocarbon/H2 Mixtures
,”
Chem. Eng.
,
26
, pp.
381
386
.
24.
Gong
,
C.
,
Li
,
Z.
,
Yi
,
L.
,
Huang
,
K.
, and
Liu
,
F.
,
2020
, “
Research on the Performance of a Hydrogen/Methanol Dual-Injection Assisted Spark-Ignition Engine Using Late-Injection Strategy for Methanol
,”
Fuel
,
260
, p.
116403
.
25.
Li
,
J.
,
Gong
,
C.-M.
,
Su
,
Y.
,
Dou
,
H.-L.
, and
Liu
,
X.-J.
,
2010
, “
Effect of Injection and Ignition Timings on Performance and Emissions From a Spark-Ignition Engine Fueled With Methanol
,”
Fuel
,
89
(
12
), pp.
3919
3925
.
26.
Wang
,
Z.
,
Liu
,
H.
,
Long
,
Y.
,
Wang
,
J.
, and
He
,
X.
,
2015
, “
Comparative Study on Alcohols–Gasoline and Gasoline–Alcohols Dual-Fuel Spark Ignition (DFSI) Combustion for High Load Extension and High Fuel Efficiency
,”
Energy
,
82
, pp.
395
405
.
27.
Verhelst
,
S.
,
Turner
,
T.W.
,
Sileghem
,
L.
, and
Vancoillie
,
J.
,
2019
, “
Methanol as a Fuel for Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
70
, pp.
43
88
.
29.
Garcia-Freites
,
S.
,
Gough
,
C.
, and
Roder
,
M.
,
2021
, “
The Green House Gas Removel Potential of Bioenergy With Carbon Capture and Storage to Support the UKs Net Zero Emission Target
,”
Biomass Bioenergy
,
151
, p.
106164
.
30.
Azevedo
,
I.
,
Bataille
,
C.
,
Bistline
,
J.
,
Clarke
,
L.
, and
Davis
,
S.
,
2021
, “
Net Zero Emissions Energy Systems: What We Know and Do Not Know
,”
Energy Clim. Change
,
2
, p.
100049
.
31.
Dong
,
L.
,
2021
, “
International Climate Governance and China's Policy Selection Under Carbon Neutrality
,”
Foriegn Aff. Rev.
,
38
(
6
), pp.
132
154
.
32.
Mu
,
S. F.
,
Shang
,
R. J.
, and
Wei
,
L. C.
,
2012
, “
Research and Application Status and Prospect of Methanol Gasoline in China
,”
Nat. Gas Chem. Ind.
,
37
(
1
), pp.
62
66
.
33.
Wu
,
P
,
Li
,
X. R.
, and
Xu
,
SH
,
2015
, “
The Research Status of Methanol Gasoline
,”
Chem. Ind. Times
,
29
(
3
), pp.
22
25
. CNKI:SUN:HGJS.0.2015.03.007
34.
Cao
,
YZ
, and
Li
,
HJ
,
2014
, “
Research Progress in Application Technology and Standard System of Methanol-Gasoline
,”
Nat. Gas Chem. Ind.
,
39
(
04
), pp.
63
67
. CNKI:SUN:TRQH.0.2014.04.021
35.
Chen
,
Z.
,
Zhang
,
T.
,
Wang
,
X.
,
Chen
,
H.
,
Geng
,
L.
, and
Zhang
,
T.
,
2021
, “
A Comparative Study of Combustion Performance and Emissions of Dual-Fuel Engines Fueled With Natural Gas/Methanol and Natural Gas/Gasoline
,”
Energy
,
237
, p.
121586
.
36.
Obulesu
,
P.
,
Kumar
,
R. S.
, and
Ramanjaneyulu
,
B.
,
2021
, “
An Experimental Test on 2-Stroke Spark Ignition Engine With Gasoline and Methanol-Gasoline Blends Using Brass Coated Piston
,”
Mater. Today Proc.
,
39
, pp.
590
595
.
37.
Güdden
,
A.
,
Pischinger
,
S.
,
Geiger
,
J.
,
Heuser
,
B.
, and
Müther
,
M.
,
2021
, “
An Experimental Study on Methanol as a Fuel in Large Bore High Speed Engine Applications—Port Fuel Injected Spark Ignited Combustion
,”
Fuel
,
303
, p.
121292
.
38.
Ji
,
C.
,
Yang
,
J.
,
Liu
,
X.
,
Zhang
,
B.
,
Wang
,
S.
, and
Gao
,
B.
,
2016
, “
A Quasi-Dimensional Model for Combustion Performance Prediction of an SI Hydrogen-Enriched Methanol Engine
,”
Int. J. Hydrogen Energy
,
41
(
39
), pp.
17676
17686
.
39.
Gong
,
C.
,
Yi
,
L.
,
Zhang
,
Z.
,
Sun
,
J.
, and
Liu
,
F.
,
2020
, “
Assessment of Ultra-Lean Burn Characteristics for a Stratified-Charge Direct-Injection Spark-Ignition Methanol Engine Under Different High Compression Ratios
,”
Appl. Energy
,
261
, p.
114478
.
40.
Liang
,
C.
,
Ji
,
C.
, and
Liu
,
X.
,
2011
, “
Combustion and Emissions Performance of a DME-Enriched Spark-Ignited Methanol Engine at Idle Condition
,”
Appl. Energy
,
88
(
11
), pp.
3704
3711
.
41.
Tian
,
Z.
,
Zhen
,
X.
,
Wang
,
Y.
,
Liu
,
D.
, and
Li
,
X.
,
2020
, “
Comparative Study on Combustion and Emission Characteristics of Methanol, Ethanol and Butanol Fuel in TISI Engine
,”
Fuel
,
259
, p.
116199
.
42.
Zhen
,
X.
,
Li
,
X.
,
Wang
,
Y.
,
Liu
,
D.
, and
Tian
,
Z.
,
2020
, “
Comparative Study on Combustion and Emission Characteristics of Methanol/Hydrogen, Ethanol/Hydrogen and Methane/Hydrogen Blends in High Compression Ratio SI Engine
,”
Fuel
,
267
, p.
117193
.
43.
Gong
,
C.
,
Li
,
Z.
,
Yi
,
L.
, and
Liu
,
F.
,
2019
, “
Comparative Study on Combustion and Emissions Between Methanol Port-Injection Engine and Methanol Direct-Injection Engine With H2-Enriched Port-Injection Under Lean-Burn Conditions
,”
Energy Convers. Manage.
,
200
, p.
112096
.
44.
Geng
,
P.
,
Zhang
,
H.
,
Yang
,
S.
, and
Yao
,
C.
,
2015
, “
Comparative Study on Measurements of Formaldehyde Emission of Methanol/Gasoline Fueled SI Engine
,”
Fuel
,
148
, pp.
9
15
.
45.
Wu
,
B.
,
Wang
,
L.
,
Shen
,
X.
,
Yan
,
R.
, and
Dong
,
P.
,
2016
, “
Comparison of Lean Burn Characteristics of an SI Engine Fueled With Methanol and Gasoline Under Idle Condition
,”
Appl. Therm. Eng.
,
95
, pp.
264
270
.
46.
Wouters
,
C.
,
Burkardt
,
P.
,
Steeger
,
F.
,
Fleischmann
,
M.
, and
Pischinger
,
S.
,
2023
, “
Comprehensive Assessment of Methanol as an Alternative Fuel for Spark-Ignition Engines
,”
Fuel
,
340
, p.
127627
.
47.
Zhang
,
Y.
,
Mu
,
Z.
,
Wei
,
Y.
,
Zhu
,
Z.
,
Du
,
R.
, and
Liu
,
S.
,
2022
, “
Comprehensive Study on Unregulated Emissions of Heavy-Duty SI Pure Methanol Engine With EGR
,”
Fuel
,
320
, p.
123974
.
48.
Sarıkoç
,
S.
,
2021
, “
Effect of H2 Addition to Methanol-Gasoline Blend on an SI Engine at Various Lambda Values and Engine Loads: A Case of Performance, Combustion, and Emission Characteristics
,”
Fuel
,
297
, p.
120732
.
49.
Nuthan Prasad
,
B. S.
,
Pandey
,
J. K.
, and
Kumar
,
G. N.
,
2021
, “
Effect of Hydrogen Enrichment on Performance, Combustion, and Emission of a Methanol Fueled SI Engine
,”
Int. J. Hydrogen Energy
,
46
(
49
), pp.
25294
25307
.
50.
Gong
,
C.
,
Liu
,
Z.
,
Su
,
H.
,
Chen
,
Y.
,
Li
,
J.
, and
Liu
,
F.
,
2019
, “
Effect of Injection Strategy on Cold Start Firing, Combustion and Emissions of a LPG/Methanol Dual-Fuel Spark-Ignition Engine
,”
Energy
,
178
, pp.
126
133
.
51.
Sahu
,
S.
,
Kumar
,
P.
, and
Dhar
,
A.
,
2022
, “
Effect of Injection Timing on Combustion, Performance and Emissions Characteristics of Methanol Fuelled DISI Engine: A Numerical Study
,”
Fuel
,
322
, p.
124167
.
52.
Dinesh
,
M. H.
,
Pandey
,
J. K.
, and
Kumar
,
G. N.
,
2022
, “
Effect of Parallel LPG Fuelling in a Methanol Fuelled SI Engine Under Variable Compression Ratio
,”
Energy
,
239
, p.
122134
.
53.
Jiang
,
Y.
,
Chen
,
Y.
, and
Xie
,
M.
,
2022
, “
Effects of Blending Dissociated Methanol Gas With the Fuel in Gasoline Engine
,”
Energy
,
247
, p.
123494
.
54.
Zhou
,
Y.
,
Hong
,
W.
,
Xie
,
F.
,
Su
,
Y.
,
Wang
,
Z.
, and
Liu
,
Y.
,
2023
, “
Effects of Different Valve Lift Adjustment Strategies on Stoichiometric Combustion and Lean Burn of Engine Fueled With Methanol/Gasoline Blending
,”
Fuel
,
339
, p.
126934
.
55.
Gong
,
C.
,
Wei
,
F.
,
Si
,
X.
, and
Liu
,
F.
,
2018
, “
Effects of Injection Timing of Methanol and LPG Proportion on Cold Start Characteristics of SI Methanol Engine With LPG Enriched Port Injection Under Cycle-by-Cycle Control
,”
Energy
,
144
, pp.
54
60
.
56.
Zhen
,
X.
,
Li
,
X.
,
Wang
,
Y.
,
Liu
,
D.
,
Tian
,
Z.
, and
Wang
,
Y.
,
2020
, “
Effects of the Initial Flame Kernel Radius and EGR Rate on the Performance, Combustion and Emission of High-Compression Spark-Ignition Methanol Engine
,”
Fuel
,
262
, p.
116633
.
57.
Zhu
,
Z.
,
Mu
,
Z.
,
Wei
,
Y.
,
Du
,
R.
, and
Liu
,
S.
,
2022
, “
Experimental Evaluation of Performance of Heavy-Duty SI Pure Methanol Engine With EGR
,”
Fuel
,
325
, p.
124948
.
58.
Gong
,
C.
,
Li
,
Z.
,
Yi
,
L.
, and
Liu
,
F.
,
2020
, “
Experimental Investigation of Equivalence Ratio Effects on Combustion and Emissions Characteristics of an H2/Methanol Dual-Injection Engine Under Different Spark Timings
,”
Fuel
,
262
, p.
116463
.
59.
Nguyen
,
D.-K.
,
Sileghem
,
L.
, and
Verhelst
,
S.
,
2019
, “
Exploring the Potential of Reformed-Exhaust Gas Recirculation (R-EGR) for Increased Efficiency of Methanol Fueled SI Engines
,”
Fuel
,
236
, pp.
778
791
.
60.
Nuthan Prasad
,
B. S.
,
Pandey
,
J. K.
, and
Kumar
,
G. N.
,
2020
, “
Impact of Changing Compression Ratio on Engine Characteristics of an SI Engine Fueled With Equi-Volume Blend of Methanol and Gasoline
,”
Energy
,
191
, p.
116605
.
61.
Gong
,
C.
,
Li
,
Z.
,
Chen
,
Y.
,
Liu
,
J.
,
Liu
,
F.
, and
Han
,
Y.
,
2019
, “
Influence of Ignition Timing on Combustion and Emissions of a Spark-Ignition Methanol Engine With Added Hydrogen Under Lean-Burn Conditions
,”
Fuel
,
235
, pp.
227
238
.
62.
Yilmaz
,
İ
, and
Taştan
,
M.
,
2018
, “
Investigation of Hydrogen Addition to Methanol-Gasoline Blends in an SI Engine
,”
Int. J. Hydrogen Energy
,
43
(
44
), pp.
20252
20261
.
63.
Cesur
,
I.
,
2022
, “
Investigation of the Effects of Water Injection Into an SI Engine Running on M15 Methanol Fuel on Engine Performance and Exhaust Emissions
,”
Energy
,
261
, p.
125203
.
64.
Feng
,
H.
,
Wei
,
J.
, and
Zhang
,
J.
,
2019
, “
Numerical Analysis of Knock Combustion With Methanol-Isooctane Blends in Downsized SI Engine
,”
Fuel
,
236
, pp.
394
403
.
65.
Zhen
,
X.
, and
Wang
,
Y.
,
2015
, “
Numerical Analysis on Original Emissions for a Spark Ignition Methanol Engine Based on Detailed Chemical Kinetics
,”
Renewable Energy
,
81
, pp.
43
51
.
66.
Tian
,
Z.
,
Wang
,
Y.
,
Zhen
,
X.
, and
Liu
,
D.
,
2022
, “
Numerical Comparative Analysis on Performance and Emission Characteristics of Methanol/Hydrogen, Ethanol/Hydrogen and Butanol/Hydrogen Blends Fuels Under Lean Burn Conditions in SI Engine
,”
Fuel
,
313
, p.
123012
.
67.
Li
,
X.
,
Zhen
,
X.
,
Wang
,
Y.
, and
Tian
,
Z.
,
2022
, “
Numerical Comparative Study on Performance and Emissions Characteristics Fueled With Methanol, Ethanol and Methane in High Compression Spark Ignition Engine
,”
Energy
,
254
, p.
124374
.
68.
Gong
,
C.
,
Sun
,
J.
,
Chen
,
Y.
, and
Liu
,
F.
,
2021
, “
Numerical Study of Cold-Start Performances of a Medium Compression Ratio Direct-Injection Twin-Spark Plug Synchronous Ignition Engine Fueled With Methanol
,”
Fuel
,
285
, p.
119235
.
69.
Gong
,
C.
,
Zhang
,
Z.
,
Sun
,
J.
, and
Liu
,
F.
,
2021
, “
Optimization on Timings of Injection and Spark of a High Compression-Ratio Stratified-Charge Methanol Engine Under Ultra-Lean Burn
,”
Fuel
,
285
, p.
119227
.
70.
Fu
,
J.
,
Deng
,
B.
,
Liu
,
J.
,
Wang
,
L.
,
Xu
,
Z.
,
Yang
,
J.
, and
Shu
,
G.
,
2014
, “
Study of SI Engine Fueled With Methanol Vapor and Dissociation Gas Based on Exhaust Heat Dissociating Methanol
,”
Energy Convers. Manage.
,
79
, pp.
213
223
.
71.
Jiang
,
B.
,
Hong
,
W.
,
Xie
,
F.
,
Su
,
Y.
,
Liu
,
Y.
, and
Feng
,
S.
,
2021
, “
Study on Combustion Control of a Methanol SICI Engine
,”
Fuel
,
306
, p.
121584
.
72.
Balki
,
M. K.
,
Temur
,
M.
,
Erdoğan
,
S.
,
Sarıkaya
,
M.
, and
Sayin
,
C.
,
2021
, “
The Determination of the Best Operating Parameters for a Small SI Engine Fueled With Methanol Gasoline Blends
,”
Sustain. Mater. Technol.
,
30
, p.
e00340
.
73.
Balki
,
M. K.
,
Sayin
,
C.
, and
Sarıkaya
,
M.
,
2016
, “
Optimization of the Operating Parameters Based on Taguchi Method in an SI Engine Used Pure Gasoline, Ethanol and Methanol
,”
Fuel
,
180
, pp.
630
637
.
74.
Li
,
X.
,
Zhen
,
X.
,
Wang
,
Y.
,
Liu
,
D.
, and
Tian
,
Z.
,
2019
, “
The Knock Study of High Compression Ratio SI Engine Fueled With Methanol in Combination With Different EGR Rates
,”
Fuel
,
257
, p.
116098
.
75.
Duan
,
Q.
,
Kou
,
H.
,
Li
,
T.
,
Yin
,
X.
,
Zeng
,
K.
, and
Wang
,
L.
,
2023
, “
Effects of Injection and Spark Timings on Combustion, Performance and Emissions (Regulated and Unregulated) Characteristics in a Direct Injection Methanol Engine
,”
Fuel Process. Technol.
,
247
, p.
107758
.
76.
Örs
,
İ
,
Yelbey
,
S.
,
Gülcan
,
H. E.
,
Sayın Kul
,
B.
, and
Ciniviz
,
M.
,
2023
, “
Evaluation of Detailed Combustion, Energy and Exergy Analysis on Ethanol-Gasoline and Methanol-Gasoline Blends of a Spark Ignition Engine
,”
Fuel
,
354
, p.
129340
.
77.
Sathish Kumar
,
T.
, and
Ashok
,
B.
,
2023
, “
Optimization of Flex Fuel Parameters to Improve the Characteristics of Methanol Powered Direct Injection Spark Ignition Engine
,”
Fuel
,
354
, p.
129370
.
78.
Kalwar
,
A.
,
Singh
,
R. K.
,
Gupta
,
A.
,
Rajak
,
R.
,
Gosakan
,
G.
, and
Agarwal
,
A. K.
,
2023
, “
Particulates, Unregulated and Regulated Emissions and Catalytic Converter Efficiency Evaluation of Methanol (M15) Fuelled BS-VI Compliant Light-Duty Spark-Ignition Engine
,”
Sci. Total Environ.
,
902
, p.
166047
.
79.
Shivaprasad
,
K. V.
,
Chitragar
,
P. R.
,
Ichchangi
,
M.
,
Ravi
,
R.
,
Yadav
,
M. S.
, and
Kumar
,
G. N.
,
2023
, “
Influence of Water-Methanol Injection and Turbocharging on the Performance of a Hydrogen-Fueled Spark Ignition Engine
,”
Environ. Qual. Manag.
,
33
(
3
), pp.
543
554
.
80.
Feng
,
H.
,
Lai
,
K.
,
Zheng
,
Z.
,
Lin
,
S.
,
Wu
,
X.
, and
Tang
,
Q.
,
2024
, “
Effects of Methanol Direct Injection and High Compression Ratio on Improving the Performances of a Spark-Ignition Passenger Car Engine
,”
Fuel
,
357
, p.
130052
.
81.
Zhu
,
C.-Z.
,
Samuel
,
O. D.
,
Elboughdiri
,
N.
,
Abbas
,
M.
,
Saleel
,
C. A.
,
Ganesan
,
N.
,
Enweremadu
,
C. C.
, and
Fayaz
,
H.
,
2023
, “
Artificial Neural Networks vs. Gene Expression Programming for Predicting Emission & Engine Efficiency of SI Operated on Blends of Gasoline-Methanol-Hydrogen Fuel
,”
Case Stud. Therm. Eng.
,
49
, p.
103109
.
82.
Lai
,
K.
,
Chen
,
H.
,
Du
,
J.
,
Zhan
,
W.
,
Li
,
Y.
, and
Xie
,
F.
,
2023
, “
Potentials of Air-EGR Dilution for Improving Performance of a High Compression Ratio Spark-Ignition Engine Fueled With Methanol
,”
Int. J. Automot. Technol.
,
24
(
4
), pp.
1061
1073
.
83.
Yang
,
S.
,
Feng
,
J.
,
Sun
,
P.
,
Wang
,
Y.
,
Dong
,
W.
,
Yu
,
X.
, and
Li
,
W.
,
2023
, “
Combustion and Emissions Characteristics of Methanol/Gasoline CISI Engines Under Different Injection Modes
,”
Fuel
,
333
, p.
126506
.
84.
Sarıkoç
,
S.
,
2023
, “
Environmental and Enviro-Economic Effect Analysis of Hydrogen-Methanol-Gasoline Addition Into an SI Engine
,”
Fuel
,
344
, p.
128124
.
85.
Wei
,
Y.
,
Zhu
,
Z.
,
Liao
,
Y.
,
Liu
,
S.
,
Shi
,
Z.
,
Zeng
,
Z.
,
Liu
,
H.
, and
Guan
,
W.
,
2023
, “
Numerical Investigations on the Effects of EGR Routes on the Combustion Characteristics and Efficiency of a Heavy-Duty SI Methanol Engine
,”
Fuel Process. Technol.
,
250
, p.
107861
.
86.
Gonca
,
G.
,
Sahin
,
B.
, and
Hocaoglu
,
M. F.
,
2023
, “
The Effects of Equivalence Ratio and Temperature of Different Fuel Mixtures on the Performance and NO Emission Characteristics of a Spark Ignition Engine
,”
Arab. J. Sci. Eng.
,
23
.
87.
Lius
,
A.
,
Sjöberg
,
M.
,
Cronhjort
,
A.
, and
Olofsson
,
U.
,
2024
, “
Experimental and Chemical-Kinetic Evaluation of a Heavy-Duty Methanol PFI Engine With Direct Water Injection
,”
Fuel
,
359
, p.
130326
.
88.
Duan
,
Q.
,
Li
,
T.
,
Liu
,
D.
,
Yin
,
X.
,
Zeng
,
K.
, and
Wang
,
L.
,
2024
, “
Improving the Lean Burn Performance of a High Compression Ratio Methanol Engine by Multiple-Injection
,”
Appl. Therm. Eng.
,
236
, p.
121481
.
89.
Usman
,
M.
,
Ijaz Malik
,
M. A.
,
Chaudhary
,
T. N.
,
Riaz
,
F.
,
Raza
,
S.
,
Abubakar
,
M.
,
Ahmad Malik
,
F.
, et al
,
2023
, “
Comparative Assessment of Ethanol and Methanol–Ethanol Blends With Gasoline in SI Engine for Sustainable Development
,”
Sustainability
,
15
(
9
), p.
7601
.
90.
Wang
,
J.
,
Tian
,
H.
,
Zhang
,
R.
,
Shen
,
B.
,
Su
,
Y.
,
Yu
,
H.
, and
Zhang
,
Y.
,
2023
, “
Experimental Investigation on the Effects of Direct Injection Timing on the Combustion, Performance and Emission Characteristics of Methanol/Gasoline Dual-Fuel Spark Turbocharged Ignition (DFSI) Engine With Different Injection Pressures Under High Load
,”
Energies
,
16
(
24
), p.
7921
.
91.
Yu
,
H.
,
Su
,
Y.
,
Shen
,
B.
,
Zhang
,
Y.
,
Wang
,
B.
, and
Zhou
,
Y.
,
2024
, “
Effect of Direct Methanol Injection Based on Low-Flow Injector on Knock of Gasoline Engine Under Heavy Load Condition
,”
Fuel
,
357
, p.
129899
.
92.
Biswal
,
S.
,
Das
,
S. R.
,
Saha
,
N.
, and
Mishra
,
P. C.
,
2023
, “
Environmental Sustainability Assessment of Gasoline and Methanol Blended Smart Fuel for Reduced Emission Formation
,”
Environ. Dev. Sustain.
,
23
.
93.
Shang
,
Z.
,
Sun
,
Y.
,
Yu
,
X.
,
He
,
L.
, and
Ren
,
L.
, “
Effect of Hydrogen-Rich Syngas Direct Injection on Combustion and Emissions in a Combined Fuel Injection—Spark-Ignition Engine
,”
Sustainability
,
15
(
11
), p.
8448
.
94.
Wei
,
Y.
,
Zhu
,
Z.
,
Liu
,
S.
,
Liu
,
H.
,
Shi
,
Z.
, and
Zeng
,
Z.
,
2023
, “
Investigation on Injection Strategy Affecting the Mixture Formation and Combustion of a Heavy-Duty Spark-Ignition Methanol Engine
,”
Fuel
,
334
, p.
126680
.
95.
Singh
,
A. P.
,
Sonawane
,
U.
, and
Agarwal
,
A. K.
,
2022
, “
Methanol/Ethanol/Butanol-Gasoline Blends Use in Transportation Engine—Part 1: Combustion, Emissions, and Performance Study
,”
ASME J. Energy Resour. Technol.
,
144
(
10
), p.
102304
.
96.
Singh
,
A. P.
,
Sonawane
,
U.
, and
Agarwal
,
A. K.
,
2022
, “
Methanol/Ethanol/Butanol–Gasoline Blends Use in Transportation Engine—Part 2: Composition, Morphology, and Characteristics of Particulates
,”
ASME J. Energy Resour. Technol.
,
144
(
10
), p.
102305
.
97.
Zhang
,
C.
,
Ge
,
Y.
,
Tan
,
J.
,
Li
,
L.
,
Peng
,
Z.
, and
Wang
,
X.
,
2017
, “
Emissions From Light-Duty Passenger Cars Fueled With Ternary Blend of Gasoline, Methanol, and Ethanol
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062202
.
98.
Li
,
X.
,
Zhen
,
X.
,
Xu
,
S.
,
Wang
,
Y.
,
Liu
,
D.
, and
Tian
,
Z.
,
2021
, “
Numerical Comparative Study on Knocking Combustion of High Compression Ratio Spark Ignition Engine Fueled With Methanol, Ethanol and Methane Based on Detailed Chemical Kinetics
,”
Fuel
,
306
, p.
121615
.
99.
Balki
,
M. K.
, and
Sayin
,
C.
,
2014
, “
The Effect of Compression Ratio on the Performance, Emissions and Combustion of an SI (Spark Ignition) Engine Fueled With Pure Ethanol, Methanol and Unleaded Gasoline
,”
Energy
,
71
, pp.
194
201
.
100.
Feng
,
H.
,
Xiao
,
S.
,
Nan
,
Z.
,
Wang
,
D.
, and
Yang
,
C.
,
2021
, “
Thermodynamic Analysis of Using Ethanol—Methanol—Gasoline Blends in a Turbocharged, Spark-Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120903
.
101.
Chen
,
H.
,
Chen
,
Z.
, and
Geng
,
L.
,
2020
, “
Influence of Water Port Injection on Cycle-to-Cycle Variations in Heavy-Duty Natural Gas Engine Under Low Load
,”
Fuel
,
280
, p.
118678
.
102.
He
,
J.
,
Chen
,
H.
, and
Zhong
,
X.
,
2019
, “
Engine Combustion and Emission Fuelled With Natural Gas: A Review
,”
J. Energy Inst.
,
92
(
4
), pp.
1123
1136
.
103.
Edsell
,
J.
,
Sankesh
,
D.
,
Mazlan
,
S.
, and
Lappas
,
P.
,
2017
, “
Comparative Study Between Early and Late Injection in a Natural-Gas Fuelled Spark-Ignited Direct-Injection Engine
,”
Energy Procedia
,
110
, pp.
275
280
.
104.
Lappas
,
P.
, and
Sankesh
,
D.
,
2017
, “
Natural-Gas Direct-Injection for Spark-Ignition Engines—A Review on Late-Injection Studies
,” SAE Technical Paper 2017-26-0067.
105.
He
,
B.-Q.
, and
Cho
,
H. M.
,
2007
, “
Spark Ignition Natural Gas Engines: A Review
,”
Energy Convers. Manag
.,
48
(
2
), pp.
608
618
.
106.
Liu
,
H.
,
Wang
,
Z.
, and
Reitz
,
R. D.
,
2017
, “
Knocking Combustion in Spark-Ignition Engines
,”
Prog. Energy Combust. Sci.
,
61
, pp.
78
112
.
107.
Wang
,
J.
,
Huang
,
Z.
,
Tang
,
C.
, and
Zheng
,
J.
,
2010
, “
Effect of Hydrogen Addition on Early Flame Growth of Lean Burn Natural Gas Air Mixtures
,”
Int. J. Hydrogen Energy
,
35
(
13
), pp.
7246
7252
.
108.
Huang
,
Z.
,
Wang
,
J.
,
Zheng
,
J.
, and
Miao
,
H.
,
2009
, “
Effect of Partially Premixed and Hydrogen Addition on Natural Gas Direct-Injection Lean Combustion
,”
Int. J. Hydrogen Energy
,
34
(
22
), pp.
9239
9247
.
109.
Zhong
,
X.
,
Zhu
,
Z.
,
Zhao
,
X.
,
Wang
,
Y.
,
Zheng
,
Z.
,
Yao
,
M.
, and
Wang
,
H.
,
2021
, “
Numerical Investigation on Combustion System Optimization of Stoichiometric Operation Natural Gas Engine Based on Knocking Boundary Extension
,”
Fuel
,
290
, p.
120092
.
110.
Liu
,
L.-X.
,
Huang
,
Z.-H.
,
Jiang
,
D.-M.
,
Ren
,
Y.
,
Liu
,
B.
,
Zeng
,
K.
, and
Wang
,
Q.
,
2008
, “
Study on Cycle-Bycycle Variations of Combustion in a Natural-Gas Direct-Injection Engine
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
222
(
9
), pp.
1657
1667
.
111.
Wang
,
Y. L.
,
Veloo
,
P. S.
,
Egolfopoulos
,
F. N.
, and
Westbrook
,
C. K.
,
2010
, “
A Comparative Experimental and Computational Study of Methanol, Ethanol, and n-Butanol Flames
,”
Combust. Flame
,
157
(
10
), pp.
1989
2004
.
112.
Zhang
,
Z.
,
Gong
,
C.
,
Sun
,
J.
,
Chen
,
Y.
, and
Liu
,
F.
,
2020
, “
Computational Study of Nozzle Spray-Line Distribution Effects on Stratified Mixture Formation, Combustion and Emissions of a High Compression Ratio DISI Methanol Engine Under Lean-Burn Condition
,”
Energy
,
205
, p.
118080
.
113.
Huang
,
Z.
,
Zhang
,
Z.
,
Wang
,
X.
,
Zheng
,
J.
,
Miao
,
H.
, and
Wang
,
X.
,
2009
, “
Combustion Characteristics of Methanol-Air and Methanol Air-Diluent Premixed Mixtures at Elevated Temperatures and Pressures
,”
Appl. Therm. Eng.
,
29
(
13
), pp.
2680
2688
.
114.
Sayin
,
C.
, and
Balki
,
M. K.
,
2014
, “
The Effect of Compression Ratio on the Performance, Emissions and Combustion of an SI Engine Fueled With Pure Ethanol, Methanol and Unleaded Gasoline
,”
Energy
,
71
, pp.
194
201
.
115.
Özdalyan
,
B.
,
Celik
,
M.
, and
Alkan
,
F.
,
2011
, “
The Use of Pure Methanol as Fuel at High Compression Ratio in a Single Cylinder Gasoline Engine
,”
Fuel
,
90
(
4
), pp.
1591
1598
.
116.
Gong
,
C.
,
Li
,
J.
,
Su
,
Y.
,
Dou
,
H.
, and
Liu
,
X.
,
2009
, “
Effect of Preheating on Firing Behavior of a Spark Ignition Methanol Fueled Engine During Cold Start
,”
Energy Fuels
,
23
(
11
), pp.
5394
5400
.
117.
Zhang
,
B.
,
Ji
,
C.
, and
Wang
,
S.
,
2013
, “
Enhancing the Performance of a Spark Ignition Methanol Engine With Hydrogen Addition
,”
Int. J. Hydrogen Energy
,
38
(
18
), pp.
7490
7498
.
118.
Ji
,
C.
,
Zhang
,
B.
,
Wang
,
S.
, and
Xiao
,
Y.
,
2014
, “
Investigation on the Cold Start Characteristics of a Hydrogen-Enriched Methanol Engine
,”
Int. J. Hydrogen Energy
,
39
(
26
), pp.
14466
14471
.
119.
Li
,
B.
,
Gao
,
Z. Q.
,
Li
,
C. Y.
,
Liu
,
B.
,
Liu
,
S. H.
,
Wu
,
X. M.
, and
Huang
,
Z.
,
2015
, “
Investigation on Characteristics of Ion Current in a Methanol Direct-Injection Spark-Ignition Engine
,”
Fuel
,
141
, pp.
185
191
.
120.
Yu
,
X.
,
Du
,
Y. D.
,
Wang
,
J. L.
,
Wu
,
H. M.
,
Dong
,
W.
, and
Gu
,
J. Q.
,
2016
, “
Research on Combustion and Emission Characteristics of a Lean Burn Gasoline Engine With Hydrogen Direct-Injection
,”
Int. J. Hydrogen Energy
,
41
(
4
), pp.
3240
3248
.
121.
Yao
,
D.
,
Ling
,
X.
, and
Wu
,
F.
,
2016
, “
Experimental Investigation on the Emissions of a PFI Engine Fueled With Methanol-Gasoline Blends
,”
Energy Fuels
,
30
(
9
), pp.
7428
7434
.
122.
Huang
,
K.
,
Gong
,
C. M.
,
Jia
,
J. L.
,
Su
,
Y.
,
Gao
,
Q.
, and
Liu
,
X. J.
,
2011
, “
Improvement of Fuel Economy of a Direct-Injection Spark-Ignition Methanol Engine Under Light Loads
,”
Fuel
,
90
(
5
), pp.
1826
1832
.
123.
Frank
,
B.
,
1991
, “
An Overview of the Technique Implications of Methanol and Ethanol as Highway Motor Vehicle Fuels
,” SAE Paper No. 912413.
124.
Cheng
,
W. K.
, and
Hinze
,
P. C.
,
1993
, “
Flame Kernel Development in a Methanol Fueled Engine
,” SAE Paper No. 932649.
125.
Aydın
,
H.
, and
Çelebi
,
Y.
,
2019
, “
An Overview on the Light Alcohol Fuels in Diesel Engines
,”
Fuel
,
236
, pp.
890
911
.
126.
Sezer
,
I.
, and
Bilgin
,
A.
,
2008
, “
Effects of Methanol Addition to Gasoline on the Performance and Fuel Cost of a Spark Ignition Engine Energy
,”
Fuel
,
22
(
4
), pp.
2782
2788
.
127.
Karare
,
H.
,
Agarwal
,
A. K.
, and
Dhar
,
A.
,
2014
, “
Combustion, Performance, Emissions and Particulate Characterization of a Methanol–Gasoline Blend (Gasohol) Fuelled Medium Duty Spark Ignition Transportation Engine
,”
Fuel Process Technol.
,
121
, pp.
16
24
.
128.
Gong
,
C.
,
Sun
,
J.
, and
Liu
,
F.
,
2021
, “
Numerical Research on Combustion and Emissions Behaviors of a Medium Compression Ratio Direct-Injection Twin-Spark Plug Synchronous Ignition Methanol Engine Under Steady-State Lean-Burn Conditions
,”
Energy
,
215
(
Part B
), p.
119193
.
129.
Zhao
,
L.
,
Wang
,
D.
, and
Qi
,
W.
,
2020
, “
Particulate Matter (PM) Emissions and Performance of Bio-Butanol-Methanol-Gasoline Blends Coupled With Air Dilution in SI Engines
,”
J. Aerosol Sci.
,
145
, p.
105546
.
130.
Lou
,
D.
,
Qi
,
B.
,
Zhang
,
Y.
, and
Fang
,
L.
,
2023
, “
Research on the Emission Characteristics of a Passenger Car Powered by Ethanol, Methanol, and Liquefied Petroleum Gas Under Real-World Running Conditions
,”
ASME J. Energy Resour. Technol.
,
145
(
4
), p.
042303
.
131.
Wei
,
Y.
,
2021
, “Measurement, Mechanism and Characteristics of Formaldehyde Emissions From Methanol/Gasoline Blends Fueled Engine,”
Methanol, Energy, Environment and Sustainability
, Vol. 16-1224-4,
Springer
,
Singapore
, pp.
978
981
.
You do not currently have access to this content.