Abstract

System simulation, parametric analysis, and exergy analysis were performed to identify the advantages and drawbacks of recompression in the direct-fired supercritical carbon dioxide (sCO2) power cycle. In a parametric investigation, the recompression ratio, turbine inlet temperature (TIT), and pressure ratio were changed, and the obtained values for the efficiency of the power cycle were compared. The TIT was varied between 600 °C and 1600 °C, revealing that recompression is highly effective for lower TIT values but is less effected at higher TIT values. For TITs above 1400 °C, the recompression cycle obtains almost no increase in efficiency. Different optimal recompression ratios were obtained for the different pressure ratios between the high- and low-pressure sides. Exergy analysis reveals that exergy destruction occurs primarily in the oxy-fuel combustor due to a chemical reaction and mixing of the high recirculation fluid. Higher TIT decreases the exergy destruction of the oxy-fuel combustor, but increases the exergy destruction in the lower temperature recuperator, and is not always favorable for obtaining efficiency improvements.

References

1.
Zhu
,
Q.
,
2017
, “
Innovative Power Generation Systems Using Supercritical CO2 Cycles
,”
Clean Energy
,
1
(
1
), pp.
68
79
.
2.
Noaman
,
M.
,
Awad
,
O.
,
Morosuk
,
T.
,
Tsatsaronis
,
G.
, and
Salomo
,
S.
,
2022
, “
Identifying the Market Scenarios for Supercritical CO2 Power Cycles
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p.
050906
.
3.
Zhang
,
N.
, and
Lior
,
N.
,
2006
, “
A Novel Near-Zero CO2 Emission Thermal Cycle With LNG Cryogenic Exergy Utilization
,”
Energy
,
31
(
10
), pp.
1666
1679
.
4.
Scaccabarozzi
,
R.
,
Gatti
,
M.
, and
Martelli
,
E.
,
2016
, “
Thermodynamic Analysis and Numerical Optimization of the NET Power Oxy-combustion Cycle
,”
Appl. Energy
,
178
, pp.
505
526
.
5.
Turchi
,
C. S.
,
Ma
,
Z.
, and
Dyreby
,
J.
,
2012
, “
Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems
,”
Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Volume 5: Manufacturing Materials and Metallurgy; Marine; Microturbines and Small Turbomachinery; Supercritical CO2 Power Cycles
,
Copenhagen, Denmark
,
June 11–15
.
6.
Khadse
,
A.
,
Blanchette
,
L.
,
Kapat
,
J.
,
Vasu
,
S.
,
Hossain
,
J.
, and
Donazzolo
,
A.
,
2018
, “
Optimization of Supercritical CO2 Brayton Cycle for Simple Cycle Gas Turbines Exhaust Heat Recovery Using Genetic Algorithm
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
071601
.
7.
Deshmukh
,
A.
, and
Kapat
,
J.
,
2020
, “
Pinch Point Analysis of Air Cooler in Supercritical Carbon Dioxide Brayton Cycle Operating Over Ambient Temperature Range
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
052104
.
8.
Weiland
,
N. T.
, and
White
,
C. W.
,
2018
, “
Techno-Economic Analysis of an Integrated Gasification Direct-Fired Supercritical CO2 Power Cycle
,”
Fuel
,
212
, pp.
613
625
.
9.
McClung
,
A.
,
Brun
,
K.
, and
Chordia
,
L.
,
2014
, “
Technical and Economic Evaluation of Supercritical Oxy-combustion for Power Generation
,”
The 4th International Symposium – Supercritical CO2 Power Cycles
,
Pittsburgh, PA
,
Sept. 9–10
, pp.
1
14
.
10.
Pan
,
Z.
,
Yan
,
M.
,
Shang
,
L.
,
Li
,
P.
,
Zhang
,
L.
, and
Liu
,
J.
,
2020
, “
Thermoeconomic Analysis of a Combined Natural Gas Cogeneration System With a Supercritical CO2 Brayton Cycle and an Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
102108
.
11.
Sulzer
,
G.
,
1950
, “Verfahren zur Erzeugung von Arbeit aus Warme,” Swiss Patent CH 269599.
12.
Feher
,
E. G.
,
1968
, “
The Supercritical Thermodynamic Power Cycle
,”
Energy Convers.
,
8
(
2
), pp.
85
90
.
13.
Angelino
,
G.
,
1968
, “
Carbon Dioxide Condensation Cycles for Power Production
,”
J. Eng. Power
,
90
(
3
), pp.
287
295
.
14.
Dostál
,
V.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,”
Doctoral dissertation, Massachusetts Institute of Technology, Department of Nuclear Engineering, Cambridge, MA
.
15.
Crespi
,
F.
,
Sánchez
,
D.
,
Sánchez
,
T.
, and
Martínez
,
G. S.
,
2018
, “
Integral Techno-economic Analysis of Supercritical Carbon Dioxide Cycles for Concentrated Solar Power
,”
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15
, ASME, p. V009T38A026.
16.
Binotti
,
M.
,
Astolfi
,
M.
,
Campanari
,
S.
,
Manzolini
,
G.
, and
Silva
,
P.
,
2017
, “
Preliminary Assessment of sCO2 Power Cycles for Application to CSP Solar Tower Plants
,”
Energy Procedia
,
105
, pp.
1116
1122
.
17.
Kim
,
Y. M.
,
Sohn
,
J. L.
, and
Yoon
,
E. S.
,
2017
, “
Supercritical CO2 Rankine Cycles for Waste Heat Recovery From Gas Turbine
,”
Energy
,
118
, pp.
893
905
.
18.
Ayub
,
A.
,
2018
, “
Supercritical Carbon Dioxide Power Cycles for Waste Heat Recovery of Gas Turbine
,” Master Dissertation, Capital University of Science and Technology, Islamabad, Pakistan.
19.
Anderson
,
K.
,
Wells
,
T.
,
Forgette
,
D.
,
Okerson
,
R.
,
DeVost
,
M.
,
Cunningham
,
S.
, and
Stuart
,
M.
,
2014
, “
Waste Heat Energy Supercritical Carbon Dioxide Recovery Cycle Analysis and Design
,”
Adv. Renewable Energy
,
1
(
1
), pp.
1
10
.
20.
Hossain
,
M. J.
,
Chowdhury
,
J. I.
,
Balta-Ozkan
,
N.
,
Asfand
,
F.
,
Saadon
,
S.
, and
Imran
,
M.
,
2021
, “
Design Optimization of Supercritical Carbon Dioxide (s-CO2) Cycles for Waste Heat Recovery From Marine Engines
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120901
.
21.
Sánchez
,
D.
,
Chacartegui
,
R.
,
Aguilar
,
F. J.
, and
Sanchez
,
T.
,
2009
, “
A New Concept for High Temperature Fuel Cell Hybrid Systems Using Supercritical Carbon Dioxide
,”
ASME J. Fuel Cell Sci. Technol.
,
6
(
2
), p.
021306
.
22.
Ryu
,
J.-Y.
,
Ko
,
A.
,
Park
,
S.-H.
, and
Park
,
J.-P.
,
2020
, “
Thermo-economic Assessment of Molten Carbonate Fuel Cell Hybrid System Combined Between Individual sCO2 Power Cycle and District Heating
,”
Appl. Therm. Eng.
,
169
, p.
114911
.
23.
Bae
,
S. J.
,
Ahn
,
Y.
,
Lee
,
J.
, and
Lee
,
J. I.
,
2014
, “
Various Supercritical Carbon Dioxide Cycle Layouts Study for Molten Carbonate Fuel Cell Application
,”
J. Power Sources
,
270
, pp.
608
618
.
24.
Tuo
,
H.
,
2011
, “
Analysis of a Reheat Carbon Dioxide Transcritical Power Cycle Using a Low Temperature Heat Source.
Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition. Volume 4: Energy Systems Analysis, Thermodynamics and Sustainability; Combustion Science and Engineering; Nanoengineering for Energy, Parts A and B
,
Denver, CO
,
Nov. 11–17
, ASME, pp.
219
225
.
25.
Deng
,
Q. H.
,
Wang
,
D.
,
Zhao
,
H.
,
Huang
,
W. T.
,
Shao
,
S.
, and
Feng
,
Z. P.
,
2017
, “
Study on Performances of Supercritical CO2 Recompression Brayton Cycles With Multi-objective Optimization
,”
Appl. Therm. Eng.
,
114
, pp.
1335
1342
.
26.
Padilla
,
R. V.
,
Soo Too
,
Y. C.
,
Benito
,
R.
, and
Stein
,
W.
,
2015
, “
Exergetic Analysis of Supercritical CO2 Brayton Cycles Integrated With Solar Central Receivers
,”
Appl. Energy
,
148
, pp.
348
365
.
27.
Zhou
,
J.
,
Zhang
,
C.
,
Su
,
S.
,
Wang
,
Y.
,
Hu
,
S.
,
Liu
,
L.
,
Ling
,
P.
,
Zhong
,
W.
, and
Xiang
,
J.
,
2018
, “
Exergy Analysis of a 1000 MW Single Reheat Supercritical CO2 Brayton Cycle Coal-Fired Power Plant
,”
Energy Convers. Manage.
,
173
, pp.
348
358
.
28.
Park
,
S.
,
Kim
,
J.
,
Yoon
,
M.
,
Rhim
,
D.
, and
Yeom
,
C.
,
2018
, “
Thermodynamic and Economic Investigation of Coal-Fired Power Plant Combined With Various Supercritical CO2 Brayton Power Cycle
,”
Appl. Therm. Eng.
,
130
, pp.
611
623
.
29.
Weiland
,
N. T.
, and
White
,
C. W.
,
2019
, “
Performance and Cost Assessment of a Natural Gas-Fueled Direct sCO2 Power Plant
,” United States. https://www.osti.gov/servlets/purl/1503567.
30.
Maio
,
D. V. D.
,
Boccitto
,
A.
, and
Caruso
,
G.
,
2015
, “
Supercritical Carbon Dioxide Applications for Energy Conversion Systems
,”
Energy Procedia
,
82
, pp.
819
824
.
31.
Johnson
,
G. A.
,
McDowell
,
M. W.
,
O'Connor
,
G. M.
,
Sonwane
,
C. G.
, and
Subbaraman
,
G.
,
2012
, “
Supercritical CO2 Cycle Development at Pratt & Whitney Rocketdyne
,”
Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Volume 5: Manufacturing Materials and Metallurgy; Marine; Microturbines and Small Turbomachinery; Supercritical CO2 Power Cycles
,
Copenhagen, Denmark
,
June 11–15
.
32.
Dunham
,
M. T.
, and
Iverson
,
B. D.
,
2014
, “
High-Efficiency Thermodynamic Power Cycles for Concentrated Solar Power Systems
,”
Renew. Sustain. Energy Rev.
,
30
, pp.
758
770
.
33.
Crespi
,
F.
,
Gavagnin
,
G.
,
Sánchez
,
D.
, and
Martínez
,
G. S.
,
2017
, “
Supercritical Carbon Dioxide Cycles for Power Generation: A Review
,”
Appl. Energy
,
195
, pp.
152
183
.
34.
Ahn
,
Y.
,
Bae
,
S. J.
,
Kim
,
M.
,
Cho
,
S. K.
,
Baik
,
S.
,
Lee
,
J. I.
, and
Cha
,
J. E.
,
2015
, “
Review of Supercritical CO2 Power Cycle Technology and Current Status of Research and Development
,”
Nucl. Eng. Technol.
,
47
(
6
), pp.
647
661
.
35.
You
,
D.
, and
Metghalchi
,
H.
,
2021
, “
On the Supercritical Carbon Dioxide Recompression Cycle
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
121701
.
36.
Moisseytsev
,
A.
, and
Sienicki
,
J. J.
,
2009
, “
Investigation of Alternative Layouts for the Supercritical Carbon Dioxide Brayton Cycle for a Sodium-Cooled Fast Reactor
,”
Nucl. Eng. Des.
,
239
(
7
), pp.
1362
1371
.
37.
Pasch
,
J. J.
,
Conboy
,
T. M.
,
Fleming
,
D. D.
, and
Rochau
,
G. E.
,
2012
, “
Supercritical CO2 Recompression Brayton Cycle: Completed Assembly Description
,” United States. https://www.osti.gov/servlets/purl/1057248.
38.
Clementoni
,
E.
, and
Cox
,
T.
,
2014
, “
Steady-State Power Operation of a Supercritical Carbon Dioxide Brayton Cycle
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 3B: Oil and Gas Applications; Organic Rankine Cycle Power Systems; Supercritical CO2 Power Cycles; Wind Energy
,
Düsseldorf, Germany
,
June 16–20
.
39.
Moore
,
J.
,
Brun
,
K.
,
Evans
,
N.
, and
Kalra
,
C.
,
2015
, “
Development of 1 MWe Supercritical CO2 Test Loop
,”
Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy
,
Montreal, Quebec, Canada
,
June 15–19
.
40.
GTI Energy
,
2023
, “Stay Up-To-Date on the New sCO2 Power Generation Technology That Will Revolutionize Future Power Generation,” https://www.gti.energy/step-demo/step-demo-news-and-events/
41.
Allam
,
R.
,
Martin
,
S.
,
Forrest
,
B.
,
Fetvedt
,
J.
,
Lu
,
X.
,
Freed
,
D.
,
Brown
,
G. W.
,
Sasaki
,
T.
,
Itoh
,
M.
, and
Manning
,
J.
,
2017
, “
Demonstration of the Allam Cycle: An Update on the Development Status of a High Efficiency Supercritical Carbon Dioxide Power Process Employing Full Carbon Capture
,”
Energy Procedia
,
114
, pp.
5948
5966
.
42.
Patel
,
S.
,
2022
, “NET Power’s First Allam Cycle 300-MW Gas-Fired Project Will Be Built in Texas,” Power.
43.
Patel
,
S.
,
2021
, “8 Rivers Unveils 560 MW of Allam Cycle Gas-Fired Projects for Colorado, Illinois,” Power.
44.
Agency I.E.
,
2017
, “Key World Energy Statistics 2017.”
45.
Alsultanny
,
Y.
, and
Al-Shammari
,
N.
,
2014
, “
Oxygen Specific Power Consumption Comparison for Air Separation Units
,”
Eng. J.
,
18
(
2
), pp.
67
80
.
46.
Zhang
,
X.-B.
,
Chen
,
J.-Y.
,
Yao
,
L.
,
Huang
,
Y.-H.
,
Zhang
,
X.-J.
, and
Qiu
,
L.-M.
,
2014
, “
Research and Development of Large-Scale Cryogenic Air Separation in China
,”
J. Zhejiang Univ. Sci. A
,
15
(
5
), pp.
309
322
.
47.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M. J.
,
1996
,
Thermal Design and Optimization
,
Wiley
,
New York
.
You do not currently have access to this content.