Abstract

This study investigates the behavior of a single droplet exposed to high-temperature ambient air and macroscopic spray characteristics of various ternary blends of diesel–ethanol–jatropha oil. The experiments on single droplet are performed at ambient pressure and high temperature. The spray experiments are performed under high-pressure and high-temperature conditions, similar to those of a diesel engine in-cylinder air at the time of fuel injection for three blends. The D50E35J15 has exhibited micro-explosion behavior; D50E30J20, which has shown puffing, and D60E20J20, which has demonstrated both micro-explosion and puffing during single droplet experiments, are selected for spray experiments. A constant volume spray chamber with optical access equipped with an electric heater was used to study evaporating spray characteristics of the blends at 5 MPa and 900 K. The spray experiments have shown that the ternary fuel blends have higher liquid penetration as compared to that of diesel due to the higher boiling point of jatropha oil. The variation in the spray cone angle between the different blends was found to be insignificant and within the measurement’s uncertainty limits. Thus, the blends which have exhibited micro-explosion and puffing in droplet experiments have not affected the macroscopic spray characteristics at higher ambient pressures.

References

1.
Rife
,
J.
, and
Heywood
,
J. B.
,
1974
, “
Photographic and Performance Studies of Diesel Combustion With a Rapid Compression Machine
,”
SAE Trans.
, pp.
2942
2961
.
2.
Hiroyasu
,
H.
, and
Arai
,
M.
,
1990
, “
Structures of Fuel Sprays in Diesel Engines
,”
SAE Trans.
, pp.
1050
1061
.
3.
Siva Prasad
,
K.
,
Srinivasa Rao
,
S.
, and
Raju
,
V. R. K.
,
2021
, “
Effect of Compression Ratio and Fuel Injection Pressure on the Characteristics of a CI Engine Operating With Butanol/Diesel Blends
,”
Alexandria Eng. J.
,
60
(
1
), pp.
1183
1197
.
4.
Emiroğlu
,
A. O.
,
2019
, “
Effect of Fuel Injection Pressure on the Characteristics of Single Cylinder Diesel Engine Powered by Butanol–Diesel Blend
,”
Fuel
,
256
, p.
115928
.
5.
Chokri
,
B.
,
Ridha
,
E.
,
Rachid
,
S.
, and
Jamel
,
B.
,
2012
, “
Experimental Study of a Diesel Engine Performance Running on Waste Vegetable Oil Biodiesel Blend
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032202
.
6.
Cubio
,
G. M.
,
Capareda
,
S. C.
, and
Alagao
,
F. B.
,
2014
, “
Real-Time Analysis of Engine Power, Thermal Efficiency, and Emission Characteristics Using Refined and Transesterified Waste Vegetable Oil
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
032201
.
7.
Çelebi
,
Y.
, and
Aydın
,
H.
,
2019
, “
An Overview on the Light Alcohol Fuels in Diesel Engines
,”
Fuel
,
236
, pp.
890
911
.
8.
Geng
,
P.
,
Cao
,
E.
,
Tan
,
Q.
, and
Wei
,
L.
,
2017
, “
Effects of Alternative Fuels on the Combustion Characteristics and Emission Products From Diesel Engines: A Review
,”
Renew. Sustain. Energy Rev.
,
71
, pp.
523
534
.
9.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2020
, “
Biodiesel Spray Characteristics and Their Effect on Engine Combustion and Particulate Emissions
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
082303
.
10.
Singh
,
P.
,
Chauhan
,
S. R.
,
Goel
,
V.
, and
Gupta
,
A. K.
,
2020
, “
Enhancing Diesel Engine Performance and Reducing Emissions Using Binary Biodiesel Fuel Blend
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012201
.
11.
Loo
,
D. L.
,
Teoh
,
Y. H.
,
How
,
H. G.
,
Teh
,
J. S.
,
Andrei
,
L. C.
,
Starčević
,
S.
, and
Sher
,
F.
,
2021
, “
Applications Characteristics of Different Biodiesel Blends in Modern Vehicles Engines: A Review
,”
Sustainability
,
13
(
17
), p.
9677
.
12.
Fayyazbakhsh
,
A.
, and
Pirouzfar
,
V.
,
2017
, “
Comprehensive Overview on Diesel Additives to Reduce Emissions, Enhance Fuel Properties and Improve Engine Performance
,”
Renew. Sustain. Energy Rev.
,
74
(
C
), pp.
891
901
.
13.
Lee
,
S.
,
Lee
,
C. S.
,
Park
,
S.
,
Gupta
,
J. G.
,
Maurya
,
R. K.
, and
Agarwal
,
A. K.
,
2017
, “
Spray Characteristics, Engine Performance and Emissions Analysis for Karanja Biodiesel and Its Blends
,”
Energy
,
119
, pp.
138
151
.
14.
Lee
,
C. S.
,
Park
,
S. W.
, and
Kwon
,
S. I.
,
2005
, “
An Experimental Study on the Atomization and Combustion Characteristics of Biodiesel-Blended Fuels
,”
Energy Fuels
,
19
(
5
), pp.
2201
2208
.
15.
Hoang
,
A. T.
,
2019
, “
Experimental Study on Spray and Emission Characteristics of a Diesel Engine Fueled With Preheated Bio-oils and Diesel Fuel
,”
Energy
,
171
, pp.
795
808
.
16.
Wang
,
X.
,
Zhang
,
Y.
,
Karthikeyan
,
C.
,
Boomadevi
,
P.
,
Maroušek
,
J.
,
Nasif
,
O.
,
Alharbi
,
S. A.
, and
Xia
,
C.
,
2022
, “
Role of Injection Pressure on Fuel Atomization and Spray Penetration on the Thevetia peruviana and Jatropha curcas Biodiesel Blends With Nanoparticle
,”
Fuel
,
324
, pp.
1
11
.
17.
Zaharin
,
M. S. M.
,
Abdullah
,
N. R.
,
Najafi
,
G.
,
Sharudin
,
H.
, and
Yusaf
,
T.
,
2017
, “
Effects of Physicochemical Properties of Biodiesel Fuel Blends With Alcohol on Diesel Engine Performance and Exhaust Emissions: A Review
,”
Renew. Sustain. Energy Rev.
,
79
, pp.
475
493
.
18.
Deshmukh
,
D.
,
Madan Mohan
,
A.
,
Anand
,
T. N. C.
, and
Ravikrishna
,
R. V.
,
2012
, “
Spray Characterization of Straight Vegetable Oils at High Injection Pressures
,”
Fuel
,
97
, pp.
879
883
.
19.
He
,
B. Q.
,
Shuai
,
S. J.
,
Wang
,
J. X.
, and
He
,
H.
,
2003
, “
The Effect of Ethanol Blended Diesel Fuels on Emissions From a Diesel Engine
,”
Atmos. Environ.
,
37
(
35
), pp.
4965
4971
.
20.
Rakopoulos
,
D. C.
,
Rakopoulos
,
C. D.
,
Kakaras
,
E. C.
, and
Giakoumis
,
E. G.
,
2008
, “
Effects of Ethanol–Diesel Fuel Blends on the Performance and Exhaust Emissions of Heavy Duty DI Diesel Engine
,”
Energy Convers. Manage.
,
49
(
11
), pp.
3155
3162
.
21.
Sayin
,
C.
,
2010
, “
Engine Performance and Exhaust Gas Emissions of Methanol and Ethanol–Diesel Blends
,”
Fuel
,
89
(
11
), pp.
3410
3415
.
22.
Alptekin
,
E.
,
2017
, “
Evaluation of Ethanol and Isopropanol as Additives With Diesel Fuel in a CRDI Diesel Engine
,”
Fuel
,
205
, pp.
161
172
.
23.
Delacourt
,
E.
,
Desmet
,
B.
, and
Besson
,
B.
,
2005
, “
Characterisation of Very High Pressure Diesel Sprays Using Digital Imaging Techniques
,”
Fuel
,
84
(
7–8
), pp.
859
867
.
24.
Eagle
,
W. E.
,
Morris
,
S. B.
, and
Wooldridge
,
M. S.
,
2014
, “
High-Speed Imaging of Transient Diesel Spray Behavior During High-Pressure Injection of a Multi-Hole Fuel Injector
,”
Fuel
,
116
, pp.
299
309
.
25.
Chen
,
P. C.
,
Wang
,
W. C.
,
Roberts
,
W. L.
, and
Fang
,
T.
,
2013
, “
Spray and Atomization of Diesel Fuel and Its Alternatives From a Single-Hole Injector Using a Common Rail Fuel Injection System
,”
Fuel
,
103
, pp.
850
861
.
26.
Ma
,
Y.
,
Huang
,
S.
,
Huang
,
R.
,
Zhang
,
Y.
, and
Xu
,
S.
,
2016
, “
Spray and Evaporation Characteristics of n-Pentanol–Diesel Blends in a Constant Volume Chamber
,”
Energy Convers. Manage.
,
130
, pp.
240
251
.
27.
Yu
,
H.
,
Liang
,
X.
,
Shu
,
G.
,
Sun
,
X.
, and
Zhang
,
H.
,
2017
, “
Experimental Investigation on Wall Film Ratio of Diesel, Butanol/Diesel, DME/Diesel and Gasoline/Diesel Blended Fuels During the Spray Wall Impingement Process
,”
Fuel Process. Technol.
,
156
, pp.
9
18
.
28.
Luo
,
H.
,
Nishida
,
K.
,
Uchitomi
,
S.
,
Ogata
,
Y.
,
Zhang
,
W.
, and
Fujikawa
,
T.
,
2018
, “
Effect of Temperature on Fuel Adhesion Under Spray-Wall Impingement Condition
,”
Fuel
,
234
, pp.
56
65
.
29.
Luo
,
H.
,
Nishida
,
K.
,
Uchitomi
,
S.
,
Ogata
,
Y.
,
Zhang
,
W.
, and
Fujikawa
,
T.
,
2018
, “
Microscopic Behavior of Spray Droplets Under Flat-Wall Impinging Condition
,”
Fuel
,
219
, pp.
467
476
.
30.
Payri
,
R.
,
Tormos
,
B.
,
Salvador
,
F. J.
, and
Araneo
,
L.
,
2008
, “
Spray Droplet Velocity Characterization for Convergent Nozzles With Three Different Diameters
,”
Fuel
,
87
(
15–16
), pp.
3176
3182
.
31.
Payri
,
R.
,
Salvador
,
F. J.
,
Gimeno
,
J.
, and
Zapata
,
L. D.
,
2008
, “
Diesel Nozzle Geometry Influence on Spray Liquid-Phase Fuel Penetration in Evaporative Conditions
,”
Fuel
,
87
(
7
), pp.
1165
1176
.
32.
Gupta
,
J. G.
, and
Agarwal
,
A. K.
,
2016
, “Macroscopic and Microscopic Spray Characteristics of Diesel and Karanja Biodiesel Blends,” No. 2016-01-0869, SAE Technical Paper.
33.
Corral-Gómez
,
L.
,
Rubio-Gómez
,
G.
,
Martínez-Martínez
,
S.
, and
Sánchez-Cruz
,
F. A.
,
2019
, “
Effect of Diesel–Biodiesel–Ethanol Blends on the Spray Macroscopic Parameters in a Common-Rail Diesel Injection System
,”
Fuel
,
241
, pp.
876
883
.
34.
Haque
,
N.
,
Singh
,
A.
, and
Saha
,
U. K.
,
2023
, “
A New Method to Develop Homogeneous and Heterogeneous Porous Micromodels Applicable to Enhanced Oil Recovery and Flow Visualization Experiments
,”
ASME J. Energy Resour. Technol.
,
145
(
10
), p.
102601
.
35.
Sforzo
,
B. A.
,
Tekawade
,
A.
,
Kastengren
,
A. L.
,
Fezzaa
,
K.
,
Ilavsky
,
J.
,
Powell
,
C. F.
,
Pei
,
Y.
,
Zhang
,
A.
, and
Levy
,
R.
,
2022
, “
X-Ray Characterization of Real Fuel Sprays for Gasoline Direct Injection
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
022303
.
36.
Patel
,
C.
,
Hwang
,
J.
,
Chandra
,
K.
,
Agarwal
,
R. A.
,
Bae
,
C.
,
Gupta
,
T.
, and
Agarwal
,
A. K.
,
2019
, “
In-Cylinder Spray and Combustion Investigations in a Heavy-Duty Optical Engine Fueled With Waste Cooking Oil, Jatropha, and Karanja Biodiesels
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012201
.
37.
Lou
,
D.
,
Tang
,
Y.
,
Wang
,
C.
,
Fang
,
L.
, and
Zhang
,
Y.
,
2022
, “
Study of Diesel Spray Impinging Ignition and Combustion Characteristics Under Variable Ambient Densities Based on the Visualization Experiment
,”
ASME J. Energy Resour. Technol.
,
144
(
10
), p.
102303
.
38.
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2018
, “
Comparison of Near-Nozzle Spray Performance of Gas-to-Liquid and Jet A-1 Fuels Using Shadowgraph and Phase Doppler Anemometry
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072009
.
39.
Boggavarapu
,
P.
, and
Ravikrishna
,
R. V.
,
2019
, “
Evaporating Spray Characteristics of a Diesel–Ethanol Micro-Emulsion
,”
Fuel
,
246
, pp.
104
107
.
40.
Zhang
,
C.
,
Yang
,
K.
,
Li
,
G.
,
Dai
,
J.
, and
Lee
,
T. H.
,
2022
, “
Spray Evaporation Characteristics of Isopropanol–Butanol–Ethanol (IBE)/Diesel Blends in a Constant Volume Chamber
,”
Fuel
,
330
, p.
125659
.
41.
Patel
,
C.
,
Hwang
,
J.
,
Bae
,
C.
,
Agarwal
,
R. A.
, and
Agarwal
,
A. K.
,
2020
, “
Microscopic Spray Characteristics of Biodiesels Derived From Karanja, Jatropha, and Waste Cooking Oils
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
124501
.
42.
Avulapati
,
M. M.
,
Ganippa
,
L. C.
,
Xia
,
J.
, and
Megaritis
,
A.
,
2016
, “
Puffing and Micro-Explosion of Diesel–Biodiesel–Ethanol Blends
,”
Fuel
,
166
, pp.
59
66
.
43.
Ismael
,
M. A
,
Heikal
,
M. R.
,
Aziz
,
A. A. R.
,
Crua
,
C.
,
El-Adawy
,
M.
,
Nissar
,
Z.
,
Baharom
,
M. B.
,
Zainal A
,
E. Z.
, and
Firmansyah
,
F.
,
2018
, “
Investigation of Puffing and Micro-Explosion of Water-in-Diesel Emulsion Spray Using Shadow Imaging
,”
Energies
,
11
(
9
), p.
2281
.
44.
Abdul Karim
,
Z. A.
,
Khan
,
M. Y.
, and
Aziz
,
A. R. A.
,
2019
, “
Evolution of Microexplosion Phenomenon in Parent–Child Droplets of Water in Biodiesel Emulsions Enhanced by Different Surfactant Dosages and Hydrophilic–Lipophilic Balance Values
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102204
.
45.
Gao
,
T.
,
Divekar
,
P.
,
Asad
,
U.
,
Han
,
X.
,
Reader
,
G. T.
,
Wang
,
M.
,
Zheng
,
M.
, and
Tjong
,
J.
,
2013
, “
An Enabling Study of Low Temperature Combustion With Ethanol in a Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042203
.
46.
Han
,
K.
,
Yang
,
B.
,
Zhao
,
C.
,
Fu
,
G.
,
Ma
,
X.
, and
Song
,
G.
,
2016
, “
Experimental Study on Evaporation Characteristics of Ethanol–Diesel Blend Fuel Droplet
,”
Exp. Therm. Fluid. Sci.
,
70
, pp.
381
388
.
47.
Avulapati
,
M. M.
,
Megaritis
,
T.
,
Xia
,
J.
, and
Ganippa
,
L.
,
2019
, “
Experimental Understanding on the Dynamics of Micro-Explosion and Puffing in Ternary Emulsion Droplets
,”
Fuel
,
239
, pp.
1284
1292
.
48.
Han
,
K.
,
Pang
,
B.
,
Ma
,
X.
,
Chen
,
H.
,
Song
,
G.
, and
Ni
,
Z.
,
2017
, “
An Experimental Study of the Burning Characteristics of Acetone–Butanol–Ethanol and Diesel Blend Droplets
,”
Energy
,
139
, pp.
853
861
.
49.
Naidu
,
P. V. K.
, and
Avulapati
,
M. M.
,
2022
, “Evaporation and Micro Explosion of Dodecane−Water Emulsion Droplets,” ASTFE Digital Library, Begel House Inc.
50.
Boggavarapu
,
P.
, and
Ravikrishna
,
R. V.
,
2018
, “
A Comparison of Evaporating Spray Structure of Jatrophamethyl Ester and Diesel, and Surrogate Fuels
,”
Atomization Sprays
,
28
(
9
), p.
797
809
.
51.
Wang
,
J.
,
Qiao
,
X.
,
Ju
,
D.
,
Sun
,
C.
, and
Wang
,
T.
,
2020
, “
Bubble Nucleation, Micro-Explosion and Residue Formation in Superheated Jatropha Oil Droplet: The Phenomena of Vapor Plume and Vapor Cloud
,”
Fuel
,
261
, p.
116431
.
52.
Pal
,
M. K.
, and
Bakshi
,
S.
,
2017
, “
Study of the Effect of Ambient Vapour Concentration on the Spray Structure of an Evaporating n-Hexane Spray
,”
Exp. Therm. Fluid. Sci.
,
88
, pp.
566
575
.
You do not currently have access to this content.