Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The aim of this research is to investigate the effect of intake closing timing (ICT) on the flow field and combustion process in elliptical rotary engines. The model that can accurately describe the working process of the elliptical rotary engine was established, five kinds of ICTs were designed, and the influence of ICT on the flow field and combustion process was studied. The results show that the advance of the ICT can increase the intake mass flowrate and reduce the back flowrate, the volumetric efficiency is 86.1% at a 145-deg crank angle (°CA) before top dead center (BTDC), which is 7.6% higher than 125 °CA BTDC. The advance of the ICT improves the consumption speed, makes the combustion reaction more intense, and shortens the combustion time. When the ICT is 145 °CA BTDC, the crank angle when the burned mass fraction is 90% (CA90) is 19.4 °CA earlier than 125 °CA BTDC, the peak mass of hydroxy in a cylinder is 41.6% higher, and the peak pressure in a cylinder is 25.9% higher. With the advance of the ICT, the pressure and heat release in the cylinder are significantly increased, the peak temperature in the cylinder is increased, the rate of carbon monoxide generation is accelerated, and the mass of nitrogen oxide emission is significantly increased. However, advancing the ICT cannot improve the indicated thermal efficiency of the elliptical rotary engine. This analysis provides a comprehensive understanding of the ICT of elliptical rotary engines.

References

1.
Shi
,
C.
,
Chai
,
S.
,
Di
,
L.
,
Ji
,
C.
,
Ge
,
Y.
, and
Wang
,
H.
,
2023
, “
Combined Experimental-Numerical Analysis of Hydrogen as a Combustion Enhancer Applied to Wankel Engine
,”
Energy
,
263
, p.
125896
.
2.
Meng
,
H.
,
Ji
,
C.
,
Xin
,
G.
,
Yang
,
J.
,
Chang
,
K.
, and
Wang
,
S.
,
2022
, “
Comparison of Combustion, Emission and Abnormal Combustion of Hydrogen-Fueled Wankel Rotary Engine and Reciprocating Piston Engine
,”
Fuel
,
318
, p.
123675
.
3.
Fan
,
B.
,
Wu
,
X.
,
Pan
,
J.
,
Qi
,
X.
,
Fang
,
J.
,
Lu
,
Q.
, and
Zhang
,
Y.
,
2023
, “
Research on the Structure of Pre-Chamber and Jet Orifice of a Turbulent Jet Ignition Rotary Engine Fueled With Methanol/Gasoline Blends
,”
Appl. Therm. Eng.
,
229
, p.
120588
.
4.
Kutlar
,
O. A.
, and
Cihan
,
O.
,
2022
, “
Investigation of Parameters Affecting Rotary Engine by Means of a One Zone Thermodynamic Model
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
042304
.
5.
Shi
,
C.
,
Ji
,
C.
,
Wang
,
S.
,
Yang
,
J.
,
Ma
,
Z.
, and
Meng
,
H.
,
2020
, “
Potential Improvement in Combustion Behavior of a Downsized Rotary Engine by Intake Oxygen Enrichment
,”
Energy Convers. Manage.
,
205
, p.
112433
.
6.
Ribau
,
J.
,
Silva
,
C.
,
Brito
,
F.
, and
Martins
,
J.
,
2012
, “
Analysis of Four-Stroke, Wankel, and Microturbine Based Range Extenders for Electric Vehicles
,”
Energy Convers. Manage.
,
58
, pp.
120
133
.
7.
Fan
,
B.
,
Zhang
,
Y.
,
Pan
,
J.
,
Wang
,
Y.
, and
Otchere
,
P.
,
2021
, “
Experimental and Numerical Study on the Formation Mechanism of Flow Field in a Side-Ported Rotary Engine Considering Apex Seal Leakage
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022303
.
8.
Zou
,
R.
,
Liu
,
J.
,
Wang
,
N.
, and
Jiao
,
H.
,
2022
, “
Combined Effects of Intake Oxygen Enrichment, Intake Pressure and Temperature on Combustion Behavior and Emission Characteristics of a Small-Scaled Rotary Engine
,”
Appl. Therm. Eng.
,
207
, p.
118096
.
9.
Meng
,
H.
,
Ji
,
C.
,
Wang
,
S.
, and
Yang
,
J.
,
2023
, “
A Review: Centurial Progress and Development of Wankel Rotary Engine
,”
Fuel
,
335
, p.
127043
.
10.
Otchere
,
P.
,
Pan
,
J.
,
Fan
,
B.
,
Chen
,
W.
, and
Lu
,
Y.
,
2021
, “
Recent Studies of Fuels Used in Wankel Rotary Engines
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
030801
.
11.
Harikrishnan
,
T. V.
,
Challa
,
S.
, and
Radhakrishna
,
D.
,
2016
, “
Numerical Investigation on the Effects of Flame Propagation in Rotary Engine Performance With Leakage and Different Recess Shapes Using Three-Dimensional Computational Fluid Dynamics
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052210
.
12.
Fan
,
B.
,
Zeng
,
Y.
,
Zhang
,
Y.
,
Pan
,
J.
,
Yang
,
W.
, and
Wang
,
Y.
,
2021
, “
Research on the Hydrogen Injection Strategy of a Direct Injection Natural Gas/Hydrogen Rotary Engine Considering Apex Seal Leakage
,”
Int. J. Hydrogen Energy
,
46
(
13
), pp.
9234
9251
.
13.
Wang
,
H.
,
Ji
,
C.
,
Shi
,
C.
,
Ge
,
Y.
,
Meng
,
H.
,
Yang
,
J.
,
Chang
,
K.
, and
Wang
,
S.
,
2022
, “
Comparison and Evaluation of Advanced Machine Learning Methods for Performance and Emissions Prediction of a Gasoline Wankel Rotary Engine
,”
Energy
,
248
, p.
123611
.
14.
Ji
,
C.
,
Wang
,
H.
,
Shi
,
C.
,
Wang
,
S.
, and
Yang
,
J.
,
2021
, “
Multi-Objective Optimization of Operating Parameters for a Gasoline Wankel Rotary Engine by Hydrogen Enrichment
,”
Energy Convers. Manage.
,
229
, p.
113732
.
15.
Wang
,
H.
,
Ji
,
C.
,
Shi
,
C.
,
Wang
,
S.
,
Yang
,
J.
, and
Ge
,
Y.
,
2021
, “
Investigation of the Gas Injection Rate Shape on Combustion, Knock and Emissions Behavior of a Rotary Engine With Hydrogen Direct-Injection Enrichment
,”
Int. J. Hydrogen Energy
,
46
(
27
), pp.
14790
14804
.
16.
Shi
,
C.
,
Chai
,
S.
,
Wang
,
H.
,
Ji
,
C.
,
Ge
,
Y.
, and
Di
,
L.
,
2023
, “
An Insight Into Direct Water Injection Applied on the Hydrogen-Enriched Rotary Engine
,”
Fuel
,
339
, p.
127352
.
17.
Shkolnik
,
A.
,
Littera
,
D.
,
Nickerson
,
M.
,
Shkolnik
,
N.
, and
Cho
,
K.
,
2014
, “
Development of a Small Rotary SI/CI Combustion Engine
,” SAE Technical Paper 2014-32-0104.
18.
Nickerson
,
M.
,
Kopache
,
A.
,
Shkolnik
,
A.
,
Becker
,
K.
,
Shkolnik
,
N.
,
Bergin
,
M.
,
Spitulnik
,
A.
, et al
,
2018
, “
Preliminary Development of a 30 kW Heavy Fueled Compression Ignition Rotary ‘X’ Engine With Target 45% Brake Thermal Efficiency
,” SAE Technical Paper 2018-01-0885.
19.
Nabours
,
S.
,
Shkolnik
,
N.
,
Nelms
,
R.
, and
Gnanam
,
G.
,
2010
, “
High Efficiency Hybrid Cycle Engine
,” SAE Technical Paper 2010-01-1110.
20.
Zhu
,
H.
,
Deng
,
X.
,
Xie
,
G.
,
Lin
,
X.
,
Lei
,
J.
, and
Jia
,
D.
,
2024
, “
Numerical Investigation of the Effects of Intake Pipe Deflection Angles on the In-Cylinder Flow and Vortex Structures of a Cycloidal Rotary Engine
,”
Phys. Fluids
,
36
(
2
), p.
025156
.
21.
Hwang
,
P.
,
Chen
,
X.
, and
Cheng
,
H.
,
2016
, “
Influences of Ignition Timing, Spark Plug and Intake Port Locations on the Combustion Performance of a Simulated Rotary Engine
,”
J. Mech.
,
32
(
5
), pp.
579
591
.
22.
Zhang
,
Y.
,
Liu
,
J.
,
Zuo
,
Z.
, and
Zhang
,
S.
,
2020
, “
Optimization of Volumetric Efficiency of a Small Wankel Engine Using Genetic Algorithm
,”
Therm. Sci.
,
24
(
1A
), pp.
101
111
.
23.
Ji
,
C.
,
Meng
,
H.
,
Wang
,
S.
,
Wang
,
D.
,
Yang
,
J.
,
Shi
,
C.
, and
Ma
,
Z.
,
2020
, “
Realizing Stratified Mixtures Distribution in a Hydrogen-Enriched Gasoline Wankel Engine by Different Compound Intake Methods
,”
Energy Convers. Manage.
,
203
, p.
112230
.
24.
Deng
,
X.
,
Feng
,
Z.
,
Lei
,
J.
,
Liu
,
Y.
, and
Jia
,
D.
,
2022
, “
Influence of Intake Pipe Deflection Angle on In-Cylinder Flow and Combustion Characteristics of a Rotary Engine
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
082302
.
25.
Zou
,
R.
,
Liu
,
J.
,
Jiao
,
H.
,
Zhao
,
J.
, and
Wang
,
N.
,
2022
, “
Combined Effect of Intake Angle and Chamber Structure on Flow Field and Combustion Process in a Small-Scaled Rotary Engine
,”
Appl. Therm. Eng.
,
203
, p.
117652
.
26.
Jeng
,
D.
,
Hsieh
,
M.
,
Lee
,
C.
, and
Han
,
Y.
,
2013
, “
The Intake and Exhaust Pipe Effect on Rotary Engine Performance
,” SAE Technical Paper 2013-32-9161.
27.
Taskiran
,
O.
,
Calik
,
A.
, and
Kutlar
,
O.
,
2019
, “
Comparison of Flow Field and Combustion in Single and Double Side Ported Rotary Engine
,”
Fuel
,
254
, p.
115651
.
28.
Wang
,
H.
,
Ji
,
C.
,
Shi
,
C.
,
Ge
,
Y.
,
Meng
,
H.
,
Yang
,
J.
,
Chang
,
K.
,
Yang
,
Z.
,
Wang
,
S.
, and
Wang
,
X.
,
2022
, “
Modeling and Parametric Study of the Performance-Emissions Trade-Off of a Hydrogen Wankel Rotary Engine
,”
Fuel
,
318
, p.
123662
.
29.
Wang
,
H.
,
Ji
,
C.
,
Shi
,
C.
,
Yang
,
J.
,
Ge
,
Y.
,
Wang
,
S.
,
Chang
,
K.
,
Meng
,
H.
, and
Wang
,
X.
,
2022
, “
Parametric Modeling and Optimization of the Intake and Exhaust Phases of a Hydrogen Wankel Rotary Engine Using Parallel Computing Optimization Platform
,”
Fuel
,
324
, p.
124381
.
30.
Wang
,
H.
,
Ji
,
C.
,
Yang
,
J.
,
Wang
,
S.
, and
Ge
,
Y.
,
2022
, “
Towards a Comprehensive Optimization of the Intake Characteristics for Side Ported Wankel Rotary Engines by Coupling Machine Learning With Genetic Algorithm
,”
Energy
,
261
, p.
125334
.
31.
Wang
,
H.
,
Ji
,
C.
,
Yang
,
J.
,
Ge
,
Y.
, and
Wang
,
S.
,
2022
, “
Implementation of a Novel Dual-Layer Machine Learning Structure for Predicting the Intake Characteristics of a Side-Ported Wankel Rotary Engine
,”
Aerosp. Sci. Technol.
,
132
, p.
108042
.
32.
Wang
,
H.
,
Ji
,
C.
,
Shi
,
C.
,
Yang
,
J.
,
Wang
,
S.
,
Ge
,
Y.
,
Chang
,
K.
,
Meng
,
H.
, and
Wang
,
X.
,
2023
, “
Multi-Objective Optimization of a Hydrogen-Fueled Wankel Rotary Engine Based on Machine Learning and Genetic Algorithm
,”
Energy
,
263
, p.
125961
.
33.
Yang
,
J.
,
Wang
,
H.
,
Ji
,
C.
,
Chang
,
K.
, and
Wang
,
S.
,
2023
, “
Investigation of Intake Closing Timing on the Flow Field and Combustion Process in a Small-Scaled Wankel Rotary Engine Under Various Engine Speeds Designed for the UAV Application
,”
Energy
,
273
, p.
127147
.
34.
Hsieh
,
C.
,
Chen
,
K.
, and
Johar
,
T.
,
2021
, “
Fluid Flow Characteristics of Two Types Rotary Engines
,”
Int. J. Hydrogen Energy
,
46
(
80
), pp.
40154
40174
.
35.
Geng
,
Q.
,
Wang
,
X.
,
Du
,
Y.
,
Yang
,
Z.
,
Wang
,
R.
, and
He
,
G.
,
2022
, “
Effect of the Hydrogen Injection Position on the Combustion Process of a Direct Injection X-Type Rotary Engine With a Hydrogen Blend
,”
Energies
,
15
(
19
), p.
7219
.
36.
Yang
,
Z.
,
Du
,
Y.
,
Geng
,
Q.
,
Gao
,
X.
,
Er
,
H.
,
Liu
,
Y.
, and
He
,
G.
,
2022
, “
Performance Analysis of a Hydrogen-Doped High-Efficiency Hybrid Cycle Rotary Engine in High-Altitude Environments Based on a Single-Zone Model
,”
Energies
,
15
(
21
), p.
7948
.
37.
Yang
,
Z.
,
Du
,
Y.
,
Geng
,
Q.
, and
He
,
G.
,
2022
, “
Energy Loss and Comprehensive Performance Analysis of a Novel High-Efficiency Hybrid Cycle Hydrogen-Gasoline Rotary Engine Under Off-Design Conditions
,”
Energy Convers. Manage.
,
267
, p.
115942
.
38.
Hou
,
Y.
,
Du
,
Y.
,
Gao
,
X.
,
Zhang
,
Z.
,
Wang
,
R.
, and
He
,
G.
,
2024
, “
Comprehensive Comparison of Single-Stage and Novel Two-Stage Hydrogen Direct Injection Strategies on the Combustion and Thermodynamic Performance of X-Type Rotary Engine Using Gasoline-Hydrogen Fuel
,”
Int. J. Hydrogen Energy
,
53
, pp.
441
456
.
39.
Costa
,
T.
,
Nickerson
,
M.
,
Littera
,
D.
,
Martins
,
J.
,
Shkolnik
,
A.
,
Shkolnik
,
N.
, and
Brito
,
F.
,
2016
, “
Measurement and Prediction of Heat Transfer Losses on the XMv3 Rotary Engine
,” SAE Technical Paper 2016-32-0033.
40.
Shkolnik
,
N.
,
Nickerson
,
M.
,
Littera
,
D.
, and
Shkolnik
,
A.
,
2015
, “
Progress in Development of a Small Rotary SI Engine
,”
Proceedings Fourth Conference on Propulsion Technologies for Unmanned Aerial Vehicles
,
Haifa, Israel
,
January 29
.
41.
Sadiq
,
G.
,
Al-Dadah
,
R.
, and
Mahmoud
,
S.
,
2019
, “
Development of Rotary Wankel Devices for Hybrid Automotive Applications
,”
Energy Convers. Manage.
,
202
, p.
112159
.
42.
Fan
,
B.
,
Pan
,
J.
,
Pan
,
Z.
,
Tang
,
A.
,
Zhu
,
Y.
, and
Xue
,
H.
,
2015
, “
Effects of Pocket Shape and Ignition Slot Locations on the Combustion Processes of a Rotary Engine Fueled With Natural Gas
,”
Appl. Therm. Eng.
,
89
, pp.
11
27
.
43.
Liu
,
Y.
,
Jia
,
M.
,
Xie
,
M.
, and
Pang
,
B.
,
2012
, “
Enhancement on a Skeletal Kinetic Model for Primary Reference Fuel Oxidation by Using a Semidecoupling Methodology
,”
Energy Fuels
,
26
(
12
), pp.
7069
7083
.
44.
Shi
,
C.
,
Ji
,
C.
,
Wang
,
S.
,
Yang
,
J.
,
Ma
,
Z.
, and
Xu
,
P.
,
2020
, “
Assessment of Spark-Energy Allocation and Ignition Environment on Lean Combustion in a Twin-Plug Wankel Engine
,”
Energy Convers. Manage.
,
209
, p.
112597
.
45.
Zou
,
R.
,
Zhang
,
Y.
,
Liu
,
J.
,
Yang
,
W.
,
Zhang
,
Y.
,
Li
,
F.
, and
Shi
,
C.
,
2022
, “
Effect of a Taper Intake Port on the Combustion Characteristics of a Small-Scale Rotary Engine
,”
Sustainability
,
14
(
23
), p.
15809
.
46.
Feng
,
Z.
,
Deng
,
X.
,
Lei
,
J.
,
Jia
,
W.
, and
Deng
,
W.
,
2022
, “
Combined Effect of Intake Pipe Deflection And Injection Timing on In-Cylinder Flow and Combustion Characteristics of a Gasoline Direct Injection Wankel Rotary Engine
,”
Appl. Therm. Eng.
,
217
, p.
119179
.
You do not currently have access to this content.