Abstract

This article deals with system development and experimental aspects of a small-scale toroidal fluidized bed gasifier (TFBG) using sawdust feedstock (carpentry waste) with average particle size of 4.18 mm. The reactor and its accessories are designed and constructed. The experiments have been performed to highlight the influence of equivalence ratio on performance parameters (i.e., reaction temperatures, gas yield, gas composition, heating value, and cold gasification efficiency). For variation of equivalence ratio from 0.181 to 0.273 (average basis), the maximum temperature increase from 1015 to 1036 K, combustibles components CO, H2, and CH4 decrease from 16% to 14.9%, 16.3% to 15.3%, and 3.5% to 2.3%, respectively, and consequently, lower heating value (LHV) decreases from 5.454 to 4.716 MJ kg−1. On qualitative basis, the maximum cold gasification efficiency is observed to be 74% at equivalence ratio of 0.273, which is considerably higher than fixed bed gasification for sawdust. The overall uncertainty of experimental data is worked out to be ±3.41% (i.e., ≤5% within 95% confidence level).

References

1.
Sharma
,
A. K.
,
2011
, “
Experimental Investigation on a 20 kWe, Solid Biomass Gasification System
,”
Biomass Bioenergy
,
35
(
1
), pp.
421
428
.
2.
Sharma
,
A. K.
,
2011
, “
Modeling & Simulation of a Downdraft Biomass Gasifier: 1 Model Development and Validation
,”
Energy Convers. Manage.
,
52
(2), pp.
1386
1396
.
3.
Laohalidanond
,
K.
, and
Kerdsuwan
,
S.
,
2021
, “
Green Energy Recovery From Waste in Thailand: Current Situation and Perspectives
,”
Int. J. Energy Clean Environ.
,
22
(
5
), pp.
103
112
.
4.
Ariöz
,
E.
,
Kurtul
,
B.
, and
Koçkar
,
Ö. M.
,
2022
, “
Catalytic Fast Pyrolysis of Safflower Biomass for Synthetic Bio-Oil Production
,”
Int. J. Energy Clean Environ.
,
23
(
1
), pp.
53
62
.
5.
Singh
,
A.
,
Yadav
,
V. K.
,
Shrivastava
,
D.
,
Singh
,
M. K.
,
Maurya
,
S.
,
Vibhanshu
,
V.
, and
Sharma
,
A. K.
,
2021
, “
Estimation of Performance Parameter of Top-Lit Updraft Cookstove Using Locally Available Wood Feedstock
,”
Int. J. Energy Clean Environ.
,
22
(
6
), pp.
129
146
.
6.
Wang
,
T.
, and
Long
,
H.
,
2022
, “
Development and Analysis of an Integrated Mild/Partial Gasification Combined (IMPGC) Cycle
,”
ASME J. Energy Resour. Technol.
,
144
(
12
), p.
122102
.
7.
Wang
,
Z.
,
Li
,
J.
,
Burra
,
K. G.
,
Liu
,
X.
,
Li
,
X.
,
Zhang
,
M.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2021
, “
Synergetic Effect on CO2-Assisted Co-Gasification of Biomass and Plastics
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
031901
.
8.
Wang
,
Z.
,
Burra
,
K. G.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2021
, “
Co-Pyrolysis of Waste Plastic and Solid Biomass for Synergistic Production of Biofuels and Chemicals—A Review
,”
Prog. Energy Combust. Sci.
,
84
, p.
100899
.
9.
Ahmed
,
I. I.
,
Nipattummakul
,
N.
, and
Gupta
,
A. K.
,
2011
, “
Characteristics of Syngas From Co-Gasification of Polyethylene and Woodchips
,”
J. Appl. Energy
,
88
(
1
), pp.
165
174
.
10.
Liu
,
X.
,
Burra
,
K. G.
,
Wang
,
Z.
,
Li
,
J.
,
Che
,
D.
, and
Gupta
,
A. K.
,
2021
, “
Syngas Characteristics From Catalytic Gasification of Polystyrene and Pinewood in CO2 Atmosphere
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052304
.
11.
Wang
,
Z.
,
Burra
,
K. G.
,
Lei
,
T. Z.
, and
Gupta
,
A. K.
,
2019
, “
Co-Gasification Characteristics of Waste Tire and Pine Bark Mixtures in CO2 Atmosphere
,”
Fuel J.
,
257
, p.
116025
.
12.
Burra
,
K. R.
, and
Gupta
,
A. K.
,
2018
, “
Synergistic Effects in Steam Gasification of Combined Biomass and Plastic Waste Mixtures
,”
Appl. Energy
,
211
, pp.
230
236
.
13.
Kirubakaran
,
V.
,
Sivaramakrishnan
,
V.
,
Nalini
,
R.
,
Sekar
,
T.
,
Premalatha
,
M.
, and
Subramanian
,
P.
,
2009
, “
A Review on Gasification of Biomass
,”
Renew. Sustain. Energy Rev.
,
13
(
1
), pp.
179
186
.
14.
Warnecke
,
R.
,
2000
, “
Gasification of Biomass: Comparison of Fixed Bed and Fluidized Bed Gasifier
,”
Biomass Bioenergy
,
18
(
6
), pp.
489
497
.
15.
Kumar
,
A.
,
2006
, “
Simulation of a Biomass Gasifier-Engine System
,”
Ph.D. thesis
,
Indian Institute of Technology
,
Delhi, India
.
16.
Black
,
J. W.
,
Gravel
,
G.
, and
Hoareau
,
R.
,
1990
, “Fluidized Bed Gasifier,” U.S. Patent 4,968,325.
17.
Geldart
,
D.
,
1986
,
Gas Fluidization Technology
,
John-Wiley and Sons
,
Chichester
.
18.
Mohideen
,
M. F.
, and
Raghavan
,
V. R.
,
2011
, “
Experimental Studies on a Swirling Fluidized Bed With Annular Distributor
,”
J. Appl. Sci.
,
11
(
11
), pp.
1980
1986
.
19.
Bharath
,
M.
,
Raghavan
,
V.
,
Prasad
,
B. V. S. S. S.
, and
Chakravarthy
,
S. R.
,
2018
, “
Co-Gasification of Indian Rice Husk and Indian Coal With High-Ash in Bubbling Fluidized Bed Gasification Reactor
,”
Appl. Therm. Eng.
,
137
, pp.
608
615
.
20.
Sayeed
,
I.
,
Kibria
,
M. A.
, and
Bhattacharya
,
S.
,
2022
, “
Gasification Kinetics of Victorian Brown Coal-Derived Char in Fluidized Bed Reactor
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
062304
.
21.
Liu
,
R.
,
Graebner
,
M.
,
Tsiava
,
R.
,
Zhang
,
T.
, and
Xu
,
S.
,
2021
, “
Simulation Analysis of the System Integrating Oxy-Fuel Combustion and Char Gasification
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
032304
.
22.
Ishaq
,
H.
, and
Dincer
,
I.
,
2022
, “
An Efficient Energy Utilization of Biomass Energy-Based System for Renewable Hydrogen Production and Storage
,”
ASME J. Energy Resour. Technol.
,
144
, p.
011701
.
23.
Zhou
,
T.
,
Yang
,
S.
,
Wei
,
Y.
,
Hu
,
J.
, and
Wang
,
H.
,
2019
, “
Impact of Wide Particle Size Distribution on the Gasification Performance of Biomass in a Bubbling Fluidized Bed Gasifier
,”
Renew. Energy
,
148
, pp.
534
547
.
24.
Nguyen
,
N. M.
,
Alobaid
,
F.
,
May
,
J.
,
Peters
,
J.
, and
Epple
,
B.
,
2020
, “
Experimental Study on Steam Gasification of Torrefied Woodchips in a Bubbling Fluidized Bed Reactor
,”
Energy
,
202
(
C
), p.
117744
.
25.
Shu
,
J.
,
Lakshmanan
,
V. I.
, and
Dodson
,
C. E.
,
2000
, “
Hydrodynamic Study of a Toroidal Fluidized Bed Reactor
,”
Chem. Eng. Process.: Process Intensif.
,
39
(
6
), pp.
499
506
.
26.
Suksuwan
,
W.
,
Wae-Hayee
,
M.
, and
Mel
,
M.
,
2018
, “
The Effect of Single and Double Air Inlets on Swirling Flow in a Reactor of a Fluidized Bed Gasifier
,”
J. Adv. Res. Fluid Mech. Therm. Sci.
,
44
(
1
), pp.
157
166
.
27.
Chyang
,
C. S.
, and
Lin
,
Y. C.
,
2002
, “
A Study in the Swirling Fluidizing Pattern
,”
Pattern J. Chem. Eng. Jpn.
,
35
(
6
), pp.
503
512
.
28.
Hafiz
,
M. A.
,
Batcha
,
M. F. M., and Asmuin, N.
,
2013
, “
Effect of Plenum Chamber Depth in a Swirling Fluidized Bed
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
50
(
1
), p.
012021
.
29.
Sreenivasan
,
B.
, and
Raghavan
,
V. R.
,
2002
, “
Hydrodynamics of a Swirling Fluidised Bed
,”
Chem. Eng. Process.: Process Intensif.
,
41
(
2
), pp.
99
106
.
30.
Batcha
,
M. F. M.
, and
Raghavan
,
V. R.
,
2011
, “
Experimental Studies on a Swirling Fluidized Bed With Annular Distributor
,”
J. Appl. Sci.
,
11
(
11
), pp.
1980
1986
.
31.
Shahbaz
,
M.
,
Yusup
,
S.
,
Naz
,
M. Y.
,
Sulaiman
,
S. A.
,
Inayat
,
A.
, and
Partama
,
A.
,
2017
, “
Fluidization of Palm Kernel Shell, Palm Oil Fronds, and Empty Fruit Bunches in a Swirling Fluidized Bed Gasifier
,”
Part. Sci. Technol.
,
35
(
2
), pp.
150
157
.
32.
Liu
,
L.
,
Huang
,
Y.
,
Cao
,
J.
,
Liu
,
C.
,
Dong
,
L.
,
Xu
,
L.
, and
Zha
,
J.
,
2018
, “
Experimental Study of Biomass Gasification With Oxygen-Enriched Air in Fluidized Bed Gasifier
,”
Sci. Total Environ.
,
626
, pp.
423
433
.
33.
Afrooz
,
I. E.
, and
Ching
,
D. L. C.
,
2019
, “
Effect of Novel Swirl Distributor Plate on Hydrodynamics of Fluidized Bed Gasifier
,”
Int. J. Eng.
,
32
(
10
), pp.
1358
1365
.
34.
Kuprianov
,
V.
, and
Kaewklum
,
K.
,
2020
, “
Combustion and Emission Characteristics of a Swirling Fluidized-Bed Combustor Burning Moisturized Rice Husk
,”
Appl. Energy
,
97
(
9
), pp.
2899
2906
.
35.
Susastriawan
,
A. A. P.
, and
Purnomo
,
H. S.
,
2019
, “
Comparison of the Gasification Performance in the Downdraft Fixed-Bed Gasifier Fed by Different Feedstocks: Rice Husk, Sawdust, and Their Mixture
,”
Sustain. Energy Technol. Assess.
,
34
, pp.
27
34
.
36.
Kumar
,
K. V.
,
Bharath
,
M.
,
Raghavan
,
V.
,
Prasad
,
B.
,
Chakravarthy
,
S.
, and
Sundararajan
,
T.
,
2017
, “
Gasification of High-Ash Indian Coal in Bubbling Fluidized Bed Using Air and Steam—An Experimental Study
,”
Appl. Therm. Eng.
,
116
, pp.
372
381
.
37.
NETPRO Renewable Energy 20 kWe-Operational & Maintenance Manual, Pollution Lab, IIT Delhi
,
1999
.
38.
Makwana
,
J. P.
,
Joshi
,
A. K.
,
Athawale
,
G.
,
Singh
,
D.
, and
Mohanty
,
P.
,
2015
, “
Air Gasification of Rice Husk in Bubbling Fluidized Bed Reactor With Bed Heating by Conventional Charcoal
,”
Bioresour. Technol.
,
178
, pp.
45
52
.
39.
Sharma
,
A. K.
,
2009
, “
Experimental Study on 75 KWth Downdraft (Biomass) Gasifier System
,”
Int. J. Renew. Energy
,
34
(
7
), pp.
1726
1733
.
40.
Ruhul
,
A. M.
,
Kalam
,
M. A.
,
Masjuki
,
H. H.
,
Alabdulkarem
,
A.
,
Atabani
,
A. E.
,
Rizwanul Fattah
,
I. M.
, and
Abedin
,
M. J.
,
2016
, “
Production, Characterization, Engine Performance and Emission Characteristics of Croton Megalocarpus and Ceiba Pentandra Complementary Blends in a Single-Cylinder Diesel Engine
,”
RSC Adv.
,
6
(
29
), pp.
24584
24595
.
41.
Imdadul
,
H. K.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Zulkigli
,
N. W. M.
,
Alabdulkarem
,
A.
,
Rashed
,
M. M.
,
Teoh
,
Y. M.
, and
How
,
H. G.
,
2016
, “
Higher Alcohol-Biodiesel-Diesel Blends: An Approach for Improving the Performance, Emission, and Combustion of a Light-Duty Diesel Engine
,”
Energy Convers. Manage.
,
111
, pp.
174
185
.
42.
Ashraful
,
A. M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Rashedul
,
H. K.
,
Habibullah
,
M.
,
Rashed
,
M. M.
,
Mosarof
,
M. H.
, and
Arslan
,
A.
,
2016
, “
Impact of Edible and Non-Edible Biodiesel Fuel Properties and Engine Operation Condition on the Performance and Emission Characteristics of Unmodified DI Diesel Engine
,”
Biofuel
,
7
(
3
), pp.
219
232
.
43.
Holman
,
J. P.
,
2011
,
Experimental Methods for Engineers
, 8th ed.,
Mc-Graw Hill, New York
.
44.
Kim
,
Y. D.
,
Yang
,
C. W.
,
Kim
,
B. J.
,
Kim
,
K. S.
,
Lee
,
J. W.
,
Moon
,
J. M.
,
Yang
,
W.
,
Yu
,
T. U.
, and
Lee
,
U. D.
,
2013
, “
Air-Blown Gasification of Woody Biomass in a Bubbling Fluidized Bed Gasifier
,”
Appl. Energy
,
112
, pp.
414
420
.
You do not currently have access to this content.