Abstract

Hydrogen is recently being promoted immensely as the primary energy carrier to replace fossil fuels for the envisioned environmentally friendly and sustainable future energy system, given its peculiar properties and advantages over conventional fuels and other alternative energy sources. Hydrogen is classified into various color categories based on the type of feedstock, technology, and CO2 emissions in its production pathway. This paper focuses on blue hydrogen, discussing its potential as the most promising hydrogen production pathway for the near-to-mid-term transition into a hydrogen economy. First, a comprehensive overview of the hydrogen economy is given with a detailed description of hydrogen's color-code categorization. Blue hydrogen production methods are explained, and blue and green hydrogen are compared on the subject of the grand energy transition. Furthermore, the arguments favoring blue hydrogen as the most promising alternative for the near-to-mid-term energy transition are explained. Finally, a comparative life cycle analysis (LCA) of environmental emissions and resource usage in blue hydrogen and other selected commonly used fuel production pathways is conducted using the greenhouse gases, regulated emissions, and energy use in technologies (GREET) model to analyze the potentials of the blue hydrogen production pathway. The LCA results showed that more efforts need to be committed to reducing nitrous and sulfur oxides in the blue hydrogen production pathway and improving energy and CO2 capturing efficiencies in carbon capture and storage (CCS) plants.

References

1.
Ugarte
,
E. R.
, and
Salehi
,
S.
,
2022
, “
A Review on Well Integrity Issues for Underground Hydrogen Storage
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p. 042001.
2.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p. 050801.
3.
Abdalla
,
A. M.
,
Hossain
,
S.
,
Nisfindy
,
O. B.
,
Azad
,
A. T.
,
Dawood
,
M.
, and
Azad
,
A. K.
,
2018
, “
Hydrogen Production, Storage, Transportation and Key Challenges With Applications: A Review
,”
Energy Convers. Manage.
,
165
, pp.
602
627
.
4.
Jie
,
Z.
,
Wang
,
C. G.
,
Zhou
,
H.
,
Ye
,
E.
,
Xu
,
J.
,
Li
,
Z.
, and
Jun Loh
,
X.
,
2021
, “
Current Research Trends and Perspectives on Solid-State Nanomaterials in Hydrogen Storage
,”
Research
,
2021
, pp.
1
10
.
5.
Mohammad Hashem
,
N.
, and
Wang
,
C.
,
2009
,
Modeling and Control of Fuel Cells: Distributed Generation Applications
. Vol. 41, John Wiley & Sons, pp.
22
30
.
6.
Dawood
,
F.
,
Anda
,
M.
, and
Shafiullah
,
G. M.
,
2020
, “
Hydrogen Production for Energy: An Overview
,”
Int. J. Hydrogen Energy
,
45
(
7
), pp.
3847
3869
.
7.
Birol
,
F.
,
2019
, “
The Future of Hydrogen: Seizing Today’s Opportunities
,” IEA Report Prepared for the G 20.
8.
Safari
,
F.
, and
Dincer
,
I.
,
2020
, “
A Review and Comparative Evaluation of Thermochemical Water Splitting Cycles for Hydrogen Production
,”
Energy Convers. Manage.
,
205
, p.
112182
.
9.
US Department of Energy
,
2017
,
H2@Scale Concept
, http://www.energy.gov/eere/fuelcells/h2scale, Accessed August 28, 2022.
10.
Zornoza
,
B.
,
Casado
,
C.
, and
Navajas
,
A.
,
2013
,
Advances in Hydrogen Separation and Purification With Membrane Technology
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
245
268
.
11.
Hardy
,
C.
,
2003
, “
The Hydrogen Economy for a Sustainable Future and the Potential Contribution of Nuclear Power
,” pp.
1
8
.
12.
Dolci
,
F.
,
2018
, “
Green Hydrogen Opportunities in Selected Industrial Processes
,” JRC Technical Report 2018.
13.
Melaina
,
M.
,
2016
, “Market Transformation Lessons for Hydrogen From the Early History of the Manufactured Gas Industry,”
Hydrogen Energy and Vehicle Systems
,
CRC Press
,
Boca Raton, FL
, pp.
150
185
.
14.
Benemann
,
J.
,
1996
, “
Hydrogen Biotechnology: Progress and Prospects
,”
Nat. Biotechnol.
,
14
(
9
), pp.
1101
1103
.
15.
Ohi
,
J.
,
2005
, “
Hydrogen Energy Cycle: An Overview
,”
J. Mater. Res.
,
20
(
12
), pp.
3180
3187
.
16.
Noussan
,
M.
,
Raimondi
,
P. P.
,
Scita
,
R.
, and
Hafner
,
M.
,
2020
, “
The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective
,”
Sustainability
,
13
(
1
), p.
298
.
17.
Mitsugi
,
C.
,
Harumi
,
A.
, and
Kenzo
,
F.
,
1998
, “
WE-NET: Japanese Hydrogen Program
,”
Int. J. Hydrogen Energy
,
23
(
3
), pp.
159
165
.
18.
Neef
,
H.-J.
,
2009
, “
International Overview of Hydrogen and Fuel Cell Research
,”
Energy
,
34
(
3
), pp.
327
333
.
19.
IEA
,
2018
, Current Policy Support for Hydrogen Deployment, IEA, Paris, https://www.iea.org/data-and-statistics/charts/current-policy-support-for-hydrogen-deployment-2018
20.
Ajanovic
,
A.
,
Sayer
,
M.
, and
Haas
,
R.
,
2022
, “
The Economics and the Environmental Benignity of Different Colors of Hydrogen
,”
Int. J. Hydrogen Energy
,
47
(
57
), pp.
1
19
.
21.
Hermesmann
,
M.
, and
Müller
,
T. E.
,
2022
, “
Green, Turquoise, Blue, or Grey? Environmentally Friendly Hydrogen Production in Transforming Energy Systems
,”
Prog. Energy Combust. Sci.
,
90
, p.
100996
.
22.
Bartlett
,
J.
, and
Krupnick
,
A.
,
2020
, “
Decarbonized Hydrogen in the US Power and Industrial Sectors: Identifying and Incentivizing Opportunities to Lower Emissions
,” Resources for the Future (2020), https://www.rff.org/publications/reports/decarbonizinghydrogen-us-power-and-industrial-sectors
23.
Ehlig-Economides
,
C.
, and
Hatzignatiou
,
D. G.
,
2021
, “
Blue Hydrogen Economy—A New Look at an Old Idea
,”
SPE Annual Technical Conference and Exhibition
,
Dubai, UAE
,
Sept. 23
,
OnePetro
.
24.
Howarth
,
R. W.
, and
Jacobson
,
M. Z.
,
2021
, “
How Green Is Blue Hydrogen?
,”
Energy Sci. Eng.
,
9
(
10
), pp.
1676
1687
.
25.
IRENA
,
2020
,
Green Hydrogen: A Guide to Policy Making
,
International Renewable Energy Agency
, Abu Dhabi, pp.
1
52
.
26.
Fincke
,
J. R.
,
Anderson
,
R. P.
,
Hyde
,
T. A.
, and
Detering
,
B. A.
,
2002
, “
Plasma Pyrolysis of Methane to Hydrogen and Carbon Black
,”
Ind. Eng. Chem. Res.
,
41
(
6
), pp.
1425
1435
.
27.
Dincer
,
I.
,
2012
, “
Green Methods for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
37
(
2
), pp.
1954
1971
.
28.
Kreith
,
F.
, and
West
,
R.
,
2004
, “
Fallacies of a Hydrogen Economy: A Critical Analysis of Hydrogen Production and Utilization
,”
ASME J. Energy Resour. Technol.
,
126
(
4
), pp.
249
257
.
29.
Kolb
,
G. J.
,
Diver
,
R. B.
, and
Siegel
,
N.
,
2007
, “
Central-Station Solar Hydrogen Power Plant
,”
ASME J. Sol. Energy Eng.
,
129
(
2
), pp.
179
183
.
30.
Jin
,
H.
,
Chen
,
B.
,
Zhao
,
X.
, and
Cao
,
C.
,
2018
, “
Molecular Dynamic Simulation of Hydrogen Production by Catalytic Gasification of Key Intermediates of Biomass in Supercritical Water
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
041801
.
31.
Xie
,
G.
,
Gupta
,
A. K.
,
Zhang
,
Y.
,
Manca
,
O.
, and
Zhang
,
H.
,
2018
, “
Special Issue on Recent Advances in Fundamentals and Applications of Biomass Energy
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
040301
.
32.
Seyed Ehsan
,
H.
,
2022
, “
Hydrogen Has Found its way to Become the Fuel of the Future
,”
Future Energy
,
1
(
3
), pp.
1
2
.
33.
Sander
,
K.
, and
Murthy
,
G. S.
,
2010
, “
Life Cycle Analysis of Algae Biodiesel
,”
Int. J. Life Cycle Assess.
,
15
(
7
), pp.
704
714
.
34.
Yu
,
M.
,
Wang
,
K.
, and
Vredenburg
,
H.
,
2021
, “
Insights Into Low-Carbon Hydrogen Production Methods: Green, Blue and Aqua Hydrogen
,”
Int. J. Hydrogen Energy
,
46
(
41
), pp.
21261
21273
.
35.
Ewan
,
B. C. R.
, and
Allen
,
R. W. K.
,
2005
, “
A Figure of Merit Assessment of the Routes to Hydrogen
,”
Int. J. Hydrogen Energy
,
30
(
8
), pp.
809
819
.
36.
Wilson
,
A.
, and
Navaro
,
R.
,
2007
, “
Driving to Green Buildings: The Transportation Energy Intensity of Buildings
,”
Environ. Build. News
,
16
(
9
), p.
1
.
37.
Navarro
,
R. M.
,
Pena
,
M. A.
, and
Fierro
,
J. L. G.
,
2007
, “
Hydrogen Production Reactions From Carbon Feedstocks: Fossil Fuels and Biomass
,”
Chem. Rev.
,
107
(
10
), pp.
3952
3991
.
38.
Nikolaidis
,
P.
, and
Poullikkas
,
A.
,
2017
, “
A Comparative Overview of Hydrogen Production Processes
,”
Renew. Sustain. Energy Rev.
,
67
, pp.
597
611
.
39.
Kalamaras
,
C. M.
, and
Efstathiou
,
A. M.
,
2013
, “
Hydrogen Production Technologies: Current State and Future Developments
,” Conference Papers in Science,
Power Options for the Eastern Mediterranean Region
,
Limassol, Cyprus
,
Nov. 19–21
, vol. 2013, pp.
1
11
.
40.
Ersöz
,
A.
,
2008
, “
Investigation of Hydrocarbon Reforming Processes for Micro-Cogeneration Systems
,”
Int. J. Hydrogen Energy
,
33
(
23
), pp.
1
11
.
41.
Farrauto
,
R.
,
Hwang
,
S.
,
Shore
,
L.
,
Ruettinger
,
W.
,
Lampert
,
J.
,
Giroux
,
T.
,
Liu
,
Y.
, and
Ilinich
,
O.
,
2003
, “
New Material Needs for Hydrocarbon Fuel Processing: Generating Hydrogen for the PEM Fuel Cell
,”
Annu. Rev. Mater. Res.
,
33
(
1
), pp.
1
27
.
42.
York
,
A. P.
,
Xiao
,
T.
, and
Green
,
M. L.
,
2003
, “
Brief Overview of the Partial Oxidation of Methane to Synthesis Gas
,”
Top. Catal.
,
22
(
3
), pp.
345
358
.
43.
Zhu
,
Q.
,
Zhao
,
X.
, and
Deng
,
Y.
,
2004
, “
Advances in the Partial Oxidation of Methane to Synthesis Gas
,”
J. Nat. Gas Chem.
,
13
(
4
), pp.
191
203
.
44.
Mota
,
N.
,
Ismagilov
,
I. Z.
,
Matus
,
E. V.
,
Kuznetsov
,
V. V.
,
Kerzhentsev
,
M. A.
,
Ismagilov
,
Z. R.
,
Navarro
,
R. M.
, and
Fierro
,
J. L. G.
,
2016
, “
Hydrogen Production by Autothermal Reforming of Methane Over Lanthanum Chromites Modified With Ru and Sr
,”
Int. J. Hydrogen Energy
,
41
(
42
), pp.
19373
19381
.
45.
Holladay
,
J. D.
,
Hu
,
J.
,
King
,
D. L.
, and
Wang
,
Y.
,
2009
, “
An Overview of Hydrogen Production Technologies
,”
Catal. Today
,
139
(
4
), pp.
244
260
.
46.
Acar
,
C.
, and
Dincer
,
I.
,
2013
, “Comparative Environmental Impact Evaluation of Hydrogen Production Methods From Renewable and Non-Renewable Sources,”
Causes, Impacts and Solutions to Global Warming
,
I.
Dincer
,
C.
Ozgur Colpan
, and
F.
Kadioglu
, eds.,
Springer
,
New York
, pp.
493
514
.
47.
Stiegel
,
G. J.
, and
Ramezan
,
M.
,
2006
, “
Hydrogen From Coal Gasification: An Economical Pathway to a Sustainable Energy Future
,”
Int. J. Coal Geol.
,
65
(
3–4
), pp.
173
190
.
48.
Higman
,
C.
,
van der Burgt
,
M.
,
Higman
,
C.
, and
Vanderburgt
,
M.
,
2008
, “The Thermodynamics of Gasification,”
Gasification
,
Gulf Professional Pub./Elsevier Science
,
Amsterdam
, pp.
11
31
.
49.
Lin
,
S.
,
Harada
,
M.
,
Suzuki
,
Y.
, and
Hatano
,
H.
,
2002
, “
Hydrogen Production From Coal by Separating Carbon Dioxide During Gasification
,”
Fuel
,
81
(
16
), pp.
1
7
.
50.
Ratafia-Brown
,
J.
,
Manfredo
,
L.
,
Hoffmann
,
J.
, and
Ramezan
,
M.
,
2002
, “
Major Environmental Aspects of Gasification-Based Power Generation Technologies
.” Final Report Prepared for the USA, DOE, DE-AT26-99FT20101.
51.
National Research Council and National Academy of Engineering
,
2004
,
The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs
,
National Academies Press
,
Washington, DC
.
52.
Mokhtar
,
B.
,
Hess
,
D.
,
Allaoui
,
T.
,
Brahami
,
M.
, and
Denai
,
M.
,
2019
, “
The Transition Towards a Sustainable Energy System in Europe: What Role can North Africa's Solar Resources Play?
Energy Strategy Reviews
,
24
, pp.
1
13
.
53.
James
,
H.
, and
Sen
,
A.
,
2021
, The Energy Transition: Key Challenges for Incumbent and New Players in the Global Energy System. No. 01. OIES Paper: ET, The Oxford Institute for Energy Studies, Oxford. pp.
1
31
.
54.
Tseng
,
P.
,
Lee
,
J.
, and
Friley
,
P.
,
2005
, “
A Hydrogen Economy: Opportunities and Challenges
,”
Energy
,
30
(
14
), pp.
2703
2720
.
55.
Rosen
,
M. A.
, and
Koohi-Fayegh
,
S.
,
2016
, “
The Prospects for Hydrogen as an Energy Carrier: An Overview of Hydrogen Energy and Hydrogen Energy Systems
,”
Energy Ecol. Environ.
,
1
(
1
), pp.
10
29
.
56.
McDowall
,
W.
,
2014
, “
Exploring Possible Transition Pathways for Hydrogen Energy: A Hybrid Approach Using Socio-Technical Scenarios and Energy System Modelling
,”
Futures
,
63
, pp.
1
14
.
57.
Rahman
,
S.
, and
Andrews
,
C. J.
,
2006
, “
Special Issue on the Hydrogen Economy
,”
Proc. IEEE
,
94
(
10
), pp.
1781
1784
.
58.
Shiva
,
K. S.
, and
Himabindu
,
V.
,
2019
, “
Hydrogen Production by PEM Water Electrolysis—A Review
,”
Mater. Sci. Energy Technol.
,
2
(
3
), pp.
442
454
.
59.
IEA
,
2021
,
Hydrogen
,
IEA
,
Paris
, https://www.iea.org/reports/hydrogen
60.
Powell
,
D.
,
2020
, “
Focus on Blue Hydrogen
,” GaffneyCline, https://www.gaffneycline.com/sites/g/files/cozyhq681/files/2020-08/Focus%20on%20Blue%20Hydrogen.pdf, Accessed August 20.
61.
Pastore
,
L. M.
,
Basso
,
G. L.
, and
de Santoli
,
M. S. L.
,
2022
, “
Technical, Economic and Environmental Issues Related to Electrolysers Capacity Targets According to the Italian Hydrogen Strategy: A Critical Analysis
,”
Renew. Sustain. Energy Rev.
,
166
, p.
112685
.
62.
Busse
,
A.
,
Power
,
G.
, and
MacMurray
,
J.
,
2018
,
Demonstration of Carbon Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production
,
Air Products and Chemicals Inc
.,
Allentown, PA
.
63.
Energy Transitions Commission
,
2021
,
Making the Hydrogen Economy Possible: Accelerating Clean Hydrogen in an Electrified Economy
, UK.
64.
Murai
,
S.
, and
Fujioka
,
Y.
,
2008
, “
Challenges to the Carbon Dioxide Capture and Storage (CCS) Technology
,”
IEEJ Trans. Electr. Electron. Eng.
,
3
(
1
), pp.
37
42
.
65.
Zapantis
,
A.
, and
Zhang
,
T.
,
2020
, “
Replacing 10% of NSW Natural Gas Supply with Clean Hydrogen: Comparison of Hydrogen Production Options
,” Prepared for the Department of Regional New South Wales, Global CCS Institute, pp.
1
35
66.
Roberto
,
F.
, and
Pantaleone
,
F.
,
2021
. “
Macroeconomic Factors Influencing Public Policy Strategies for Blue and Green Hydrogen
,”
Energies
,
14
(
23
), pp.
1
18
.
67.
Global C.C.S. Institute
,
2021
, “
Blue Hydrogen
,” pp.
1
16
. https://www.globalccsinstitute.com/wp-content/uploads/2021/04/CCE-Blue-Hydrogen.pdf
68.
Gielen
,
D.
,
Taibi
,
E.
, and
Miranda
,
R.
,
2019
,
Hydrogen: A Renewable Energy Perspective
,
International Renewable Energy Agency
,
Abu Dhabi
.
69.
US Department of Energy
,
2020
,
Hydrogen Strategy. Enabling a Low-Carbon Economy
, Energy, Washington, DC.
70.
Boswell
,
R.
,
Yoneda
,
J.
, and
Waite
,
W. F.
,
2019
, “
India National Gas Hydrate Program Expedition 02 Summary of Scientific Results: Evaluation of Natural Gas-Hydrate-Bearing Pressure Cores
,”
Mar. Pet. Geol.
,
108
, pp.
143
153
.
71.
IEA
,
2017
,
Renewables 2017
,
IEA
,
Paris
, https://www.iea.org/reports/renewables-2017
72.
Navas-Anguita
,
Z.
,
García-Gusano
,
D.
,
Dufour
,
J.
, and
Iribarren
,
D.
,
2021
, “
Revisiting the Role of Steam Methane Reforming With CO2 Capture and Storage for Long-Term Hydrogen Production
,”
Sci. Total Environ.
,
771
, p.
145432
.
73.
Ertesvåg
,
I. S.
,
Kvamsdal
,
H. M.
, and
Bolland
,
O.
,
2005
, “
Exergy Analysis of a Gas-Turbine Combined-Cycle Power Plant With Precombustion CO2 Capture
,”
Energy
,
30
(
1
), pp.
5
39
.
74.
Trainor
,
A. M.
,
McDonald
,
R. I.
, and
Fargione
,
J.
,
2016
, “
Energy Sprawl Is the Largest Driver of Land Use Change in United States
,”
PLoS One
,
11
(
9
), p.
e0162269
.
75.
De Jong
,
S.
,
Antonissen
,
K.
,
Hoefnagels
,
R.
,
Lonza
,
L.
,
Wang
,
M.
,
Faaij
,
A.
, and
Junginger
,
M.
,
2017
, “
Life-Cycle Analysis of Greenhouse Gas Emissions From Renewable Jet Fuel Production
,”
Biotechnol. Biofuels
,
10
(
1
), pp.
1
18
.
76.
Curran
,
S. J.
,
Wagner
,
R. M.
,
Graves
,
R. L.
,
Keller
,
M.
, and
Green
,
J. B.
, Jr.
,
2014
, “
Well-to-Wheel Analysis of Direct and Indirect Use of Natural Gas in Passenger Vehicles
,”
Energy
,
75
, pp.
194
203
.
77.
Wang
,
M.
,
Elgowainy
,
A.
,
Lee
,
U.
,
Bafana
,
A.
,
Banerjee
,
S.
,
Thathiana Benavides
,
P.
,
Bobba
,
P.
, et al
,
2021
, Summary of Expansions and Updates in GREET 2021. No. ANL/ESD-21/16. Argonne National Lab. (ANL), Argonne, IL.
78.
Steward
,
D.
,
Ramsden
,
T.
, and
Zuboy
,
J.
,
2008
,
H2A Production Model, Version 2 User Guide. No. NREL/TP-560-43983
,
National Renewable Energy Lab.(NREL)
,
Golden, CO
.
79.
Scheutz
,
C.
,
Bogner
,
J.
,
Chanton
,
J. P.
,
Blake
,
D.
,
Morcet
,
M.
,
Aran
,
C.
, and
Kjeldsen
,
P.
,
2008
, “
Atmospheric Emissions and Attenuation of Non-Methane Organic Compounds in Cover Soils at a French Landfill
,”
Waste Manage.
,
28
(
10
), pp.
1892
1908
.
80.
Forster
,
P.
,
Ramaswamy
,
V.
,
Artaxo
,
P.
,
Berntsen
,
T.
,
Betts
,
R.
,
Fahey
,
D. W.
,
Haywood
,
J.
, et al
,
2007
, “Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2,”
Climate Change 2007. The Physical Science Basis
,
Cambridge University Press
,
Cambridge
, pp.
80
90
.
81.
Abu-Rayash
,
A.
, and
Dincer
,
I.
,
2019
, “
Sustainability Assessment of Energy Systems: A Novel Integrated Model
,”
J. Cleaner Prod.
,
212
, pp.
1098
1116
.
82.
Dufour
,
J.
,
Serrano
,
D. P.
,
Galvez
,
J. L.
,
Moreno
,
J.
, and
Garcia
,
C.
,
2009
, “
Life Cycle Assessment of Processes for Hydrogen Production. Environmental Feasibility and Reduction of Greenhouse Gases Emissions
,”
Int. J. Hydrogen Energy
,
34
(
3
), pp.
1370
1376
.
83.
McKone
,
T. E.
, and
Hertwich
,
E. G.
,
2001
, “
The Human Toxicity Potential and a Strategy for Evaluating Model Performance in Life Cycle Impact Assessment
,”
Int. J. Life Cycle Assess.
,
6
(
2
), pp.
106
109
.
84.
Rock
,
L.
,
O’Brien
,
S.
,
Tessarolo
,
S.
,
Duer
,
J.
,
Bacci
,
V. O.
,
Hirst
,
B.
,
Randell
,
D.
, et al
,
2017
, “
The Quest CCS Project: 1st Year Review Post Start of Injection
,”
Energy Procedia
,
114
, pp.
5320
5328
.
85.
IRENA
,
2019
, “
Hydrogen: A Renewable Energy Perspective—Report Prepared for the 2nd Hydrogen Energy Ministerial Meeting in Tokyo.
86.
Maria
João, R.
,
Pereira
,
A.
,
Ferreira
,
A. F. P.
,
Ribeiro
,
A. M.
, and
Rodrigues
,
A. E.
,
2021
, “
Current Developments of Carbon Capture Storage and/or Utilization–Looking for Net-Zero Emissions Defined in the Paris Agreement
,”
Energies
14
(
9
), pp.
5
28
.
87.
Edwards
,
R.
,
Howe
,
J.
, and
Font-Palma
,
C.
,
2022
, “
Accelerating Sustainability Transitions: The Case of the Hydrogen Agenda in the North West Region of England
,”
Sustain.: Sci. Pract. Policy
,
18
(
1
), pp.
428
442
.
88.
Jing-Li
,
F.
,
Yu
,
P.
,
Li
,
K.
,
Xu
,
M.
, and
Zhang
,
X.
,
2022
, “
A Levelized Cost of Hydrogen (LCOH) Comparison of Coal-to-Hydrogen with CCS and Water Electrolysis Powered by Renewable Energy in China
,”
Energy
,
242
, pp.
1
12
.
89.
Reace Louise
,
E.
,
Font-Palma
,
C.
, and
Howe
,
J.
,
2021
, “
The Status of Hydrogen Technologies in the UK: A Multi-Disciplinary Review
,”
Sustain. Energy Technol. Assess.
,
43
, p.
100901
.
90.
U.S. Department of Energy
,
2021
, “
How the American Jobs Plan Will Advance America's Energy and Competitiveness Priorities
,” energy.gov [online], https://www.energy.gov/articles/how-american-jobs-plan-will-advance-americas-energy-and-competitiveness-priorities, Accessed August 28, 2022.
91.
Sergei
,
P.
, and
Baldynov
,
O.
,
2018
. “
The Hydrogen Energy Infrastructure Development in Japan
,” International Conference Green Energy and Smart Grids, pp.
1
11
.
92.
Biniek
,
K.
,
Henderson
,
K.
,
Rogers
,
M.
, and
Santoni
,
G.
,
2020
, “
Driving CO2 Emissions to Zero (and Beyond) With Carbon Capture, Use, and Storage
,” McKinsey Quarterly.
You do not currently have access to this content.