Abstract

In this study, a diesel tractor engine is numerically modeled to run entirely on natural gas by installing a natural gas fuel injector on the intake manifold and assembling a spark plug in lieu of a diesel injector. In the numerical study, the methane chemical kinetic mechanism representing natural gas, Reynolds-averaged Navier–Stokes (RANS) k–e turbulence, and the G-equation combustion model were used. The spark-ignition time was assumed to be 719.5 crank angle degree (CAD), which was the start of the diesel injection time. Analysis was carried out at 2300 revolutions per minute (rpm), at a high compression ratio of 17.5:1, at a fixed spark-ignition time, and at eight different equivalence ratios under full load. The equivalence ratio was changed by keeping the air mass constant and reducing the mass of the fuel. The effects of the obtained equivalence ratio on engine performance, combustion characteristics, and emission values were investigated. The results revealed that natural gas could be used up to Φ = 0.60 without affecting performance, increasing emissions, or exceeding the knock limit compared with the diesel cycle. In addition, it was observed that ultralow (below 10 particulate per million (ppm)) emission values could be obtained by further reducing the equivalence ratio, providing a uniform thermal field.

References

1.
Dinler
,
N.
,
Aktas
,
F.
, and
Yucel
,
N.
,
2018
, “
Effects of Channel Design and Temperature on the Performance of the Catalytic Converter
,”
Int. J. Green Energy
,
15
(
13
), pp.
813
820
.
2.
Internal Combustion Engine (ICE) Powered Vehicles Sold in Selected Countries or Regions Worldwide Between 2015 and 2030, https://www.statista.com/statistics/961138/ice-vehicle-sales-selected-world-regions/
3.
Reddy
,
H.
, and
Abraham
,
J.
,
2010
, “
Ignition Kernel Development Studies Relevant to Lean-Burn Natural-Gas Engines
,”
Fuel
,
89
(
11
), pp.
3262
3271
.
4.
Fakhari
,
A. H.
,
Shafaghat
,
R.
, and
Jahanian
,
O.
,
2020
, “
Numerical Simulation of a Naturally Aspirated Natural Gas/Diesel RCCI Engine for Investigating the Effects of Injection Timing on the Combustion and Emissions
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
072301
.
5.
Ali
,
K.
,
Kim
,
C.
,
Lee
,
Y.
,
Oh
,
S.
, and
Kim
,
K.
,
2020
, “
A Numerical Study to Investigate the Effect of Syngas Composition and Compression Ratio on the Combustion and Emission Characteristics of a Syngas-Fueled HCCI Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
9
), p.
092301
.
6.
Singh
,
A. P.
,
Bajpai
,
N.
, and
Agarwal
,
A. K.
,
2018
, “
Combustion Mode Switching Characteristics of a Medium-Duty Engine Operated in Compression Ignition/PCCI Combustion Modes
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092201
.
7.
Aktas
,
F.
,
2022
, “
Three-Dimensional Computational Fluid Dynamics Simulation and Mesh Size Effect of the Conversion of a Heavy-Duty Diesel Engine to Spark-Ignition Natural Gas Engine
,”
ASME J. Eng. Gas Turbines Power
,
144
(
6
), p.
061004
.
8.
Aktas
,
F.
, and
Karyeyen
,
S.
,
2022
, “
Colorless Distributed Combustion (CDC) Effects on a Converted Spark-Ignition Natural Gas Engine
,”
Fuel
,
317
, p.
123521
.
9.
Aktas
,
F.
,
2022
, “
Spark Ignition Timing Effects on a Converted Diesel Engine Using Natural Gas: A Numerical Study
,”
Proc. Inst. Mech. Eng. Part D: J. Automob. Eng
.
10.
Aktas
,
F.
,
2022
, “
A 0/1-Dimensional Numerical Analysis of Performance and Emission Characteristics of the Conversion of Heavy-Duty Diesel Engine to Spark-Ignition Natural Gas Engine
,”
Int. J. Autom. Sci. Technol.
,
6
(
1
), pp.
1
8
.
11.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2018
, “
3D CFD Simulation of a CI Engine Converted to SI Natural Gas Operation Using the G-Equation
,”
Fuel
,
232
, pp.
833
844
.
12.
Stocchi
,
I.
,
Liu
,
J.
,
Dumitrescu
,
C. E.
,
Battistoni
,
M.
, and
Grimaldi
,
C. N.
,
2018
, “
Effect of Piston Crevices on 3D Simulation of a Heavy-Duty Diesel Engine Retrofitted to Natural Gas Spark Ignition
,”
Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition (Vol. 6A: Energy)
,
ASME
,
Pittsburgh, PA,
Nov. 9–15,
Paper No.
V06AT08A020
.
13.
Liu
,
J.
,
Szybist
,
J.
, and
Dumitrescu
,
C.
,
2018
, “
Choice of Tuning Parameters on 3D IC Engine Simulations Using G-Equation
,”
SAE Paper
, 2018-01-0183, pp.
1
14
.
14.
U.S. Energy Information Administration (EIA)
,
2016
,
Annual Energy Outlook 2016 (AEO 2016)
,
EIA
,
Washington, DC
, DOE/EIA-0383.
15.
Meyer
,
R.
,
Meyers
,
D.
,
Shahed
,
S.
, and
Duggal
,
V.
,
1992
, “Development of a Heavy Duty On-Highway Natural Gas-Fueled Engine,” SAE Technical Paper 922362.
16.
Zuo
,
C.
, and
Zhao
,
J.
,
2001
, “Development of Diesel Engines Fuelled With Natural Gas,” SAE Technical Papers.
17.
Agarwal
,
A.
, and
Assanis
,
D.
,
2000
, “Multi-Dimensional Modeling of Ignition, Combustion and Nitric Oxide Formation in Direct Injection Natural Gas Engines,” SAE Technical Paper Series.
18.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
, “
Methodology to Separate the Two Burn Stages of Natural-Gas Lean Premixed-Combustion Inside a Diesel Geometry
,”
Energy Convers. Manage.
,
195
, pp.
21
31
.
19.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
, “Experimental Investigation of Combustion Characteristics in a Heavy-Duty Compression-Ignition Engine Retrofitted to Natural-Gas Spark-Ignition Operation,” SAE Technical Papers.
20.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
, “
Lean-Burn Characteristics of a Heavy-Duty Diesel Engine Retrofitted to Natural-Gas Spark Ignition
,”
ASME J. Eng. Gas Turbines Power
,
141
(
7
), p.
071013
. doi.org/10.1115/1.4042501
21.
Liu
,
J.
,
2018
, “
Investigation of Combustion Characteristics of a Heavy-Duty Diesel Engine Retrofitted to Natural Gas Spark Ignition Operation
,”
Graduate theses, dissertations
, and Problem Reports 2018, 3713,
West Virginia University
.
22.
Liu
,
J.
,
Bommisetty
,
H. K.
, and
Dumitrescu
,
C. E.
,
2019
, “
Experimental Investigation of a Heavy-Duty Compression-Ignition Engine Retrofitted to Natural Gas Spark-Ignition Operation
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112207
.
23.
Liu
,
J.
, and
Dumitrescu
,
C.
,
2019
, “Experimental Investigation of a Natural Gas Lean-Burn Spark Ignition Engine With Bowl-in-Piston Combustion Chamber,” SAE Technical Paper, pp.
1
13
.
24.
Liu
,
J.
, and
Dumitrescu
,
C.
,
2019
, “Methodology to Determine the Fast Burn Period Inside a Heavy-Duty Diesel Engine Converted to Natural Gas Lean-Burn Spark Ignition Operation,” SAE Technical Paper Series.
25.
Aktas
,
F.
,
2021
, “
Bir dizel motorda çift yakit olarak propan-dizel kullaniminin yanma rejimine, motor performansina ve emisyon değerlerine olan etkilerinin sayisal olarak incelenmesi
,”
Ph.D. thesis
,
Graduate School of Natural and Applied Sciences, Gazi University
.
26.
Noor
,
M. M.
,
Aziz
,
H. A.
, and
Wandel
,
A. P.
,
2012
, “
Modelling of Non-Premixed Turbulent Combustion of Hydrogen Using Conditional Moment Closure Method
,”
IOP Conf. Ser. Mater. Sci. Eng
.,
36
.
27.
ANSYS Forte
,
2020
, “Theory Guide,” Release 2020.R2. Ansys, Inc.
28.
ANSYS Forte
,
2020
, “User Guide,” Release 2020.R2. Ansys, Inc.
29.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG κ–ɛ Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.
30.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization Group Analysis of Turbulence. I. Basic Theory
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
.
31.
Verma
,
I.
,
Bish
,
E.
,
Kuntz
,
M.
,
Meeks
,
E.
,
Puduppakkam
,
K.
,
Naik
,
C.
, and
Liang
,
L.
,
2016
, “CFD Modeling of Spark Ignited Gasoline Engines—Part 1: Modeling the Engine Under Motored and Premixed-Charge Combustion Mode,” SAE Technical Paper 2016-01-0591.
32.
Verma
,
I.
,
Bish
,
E.
,
Kuntz
,
M.
,
Meeks
,
E.
,
Puduppakkam
,
K.
,
Naik
,
C.
, and
Liang
,
L.
,
2016
, “CFD Modeling of Spark Ignited Gasoline Engines—Part 2: Modeling the Engine in Direct Injection Mode Along With Spray Validation,” SAE Technical Paper 2016-01-0579.
33.
Stocchi
,
I.
,
Liu
,
J.
,
Dumitrescu
,
C. E.
,
Battistoni
,
M.
, and
Grimaldi
,
C. N.
,
2019
, “
Effect of Piston Crevices on the Numerical Simulation of a Heavy-Duty Diesel Engine Retrofitted to Natural-Gas Spark-Ignition Operation
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112204
.
34.
Han
,
Z.
, and
Reitz
,
R. D.
,
1997
, “
A Temperature Wall Function Formulation for Variable-Density Turbulence Flows With Application to Engine Convective Heat Transfer Modeling
,”
Int. J. Heat Mass Transfer
,
40
(
3
), pp.
613
625
.
35.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
36.
Pulkrabek
,
W. W.
,
1997
,
Engineering Fundamentals of the Internal Combustion Engine
,
Pearson
,
Upper Saddle River, NJ, Prentice Hall
.
37.
Gong
,
C.
,
Yi
,
L.
,
Zhang
,
Z.
,
Sun
,
J.
, and
Liu
,
F.
,
2020
, “
Assessment of Ultra-Lean Burn Characteristics for a Stratified-Charge Direct-Injection Spark-Ignition Methanol Engine Under Different High Compression Ratios
,”
Appl. Energy
,
261
, p.
114478
.
38.
Akansu
,
S. O.
,
Kahraman
,
N.
, and
Çeper
,
B.
,
2007
, “
Experimental Study on a Spark Ignition Engine Fuelled by Methane-Hydrogen Mixtures
,”
Int. J. Hydrogen Energy
,
32
(
17
), pp.
4279
4284
.
39.
Hanson
,
R.
,
Ickes
,
A.
, and
Wallner
,
T.
,
2016
, “
Use of Adaptive Injection Strategies to Increase the Full Load Limit of RCCI Operation
,”
ASME. J. Eng. Gas Turbines Power.
,
138
(
10
), p.
102802
.
40.
Krishnan
,
S. R.
,
Srinivasan
,
K. K.
, and
Raihan
,
M. S.
,
2016
, “
The Effect of Injection Parameters and Boost Pressure on Diesel-Propane Dual Fuel Low Temperature Combustion in a Single-Cylinder Research Engine
,”
Fuel
,
184
, pp.
490
502
.
41.
Poompipatpong
,
C.
, and
Cheenkachorn
,
K.
,
2011
, “
A Modified Diesel Engine for Natural Gas Operation: Performance and Emission Tests
,”
Energy
,
36
(
12
), pp.
6862
6866
.
42.
Fumey
,
B.
,
Buetler
,
T.
, and
Vogt
,
U. F.
,
2018
, “
Ultra-Low NOx Emissions From Catalytic Hydrogen Combustion
,”
Appl. Energy
,
213
, pp.
334
342
.
43.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
, “
Combustion Partitioning Inside a Natural Gas Spark Ignition Engine With a Bowl-in-Piston Geometry
,”
Energy Convers. Manage.
,
183
, pp.
73
83
.
You do not currently have access to this content.