Abstract

Ceramic materials used in solid-oxide fuel cells (SOFCs) are subjected to high thermal stresses which is a result of the unequal thermal expansion coefficient of different layers. As a result, SOFCs are susceptible to failure at elevated temperatures, and therefore the maximum operating temperature is limited. Consequently, the power density is limited as well. Fuel cells with electrodes that have graded compositions in the thickness direction have been investigated to control the thermal expansion. In this study, two-dimensional grading is proposed for the electrodes and compared with the one-dimensional grading in terms of thermal stress and performance. A comprehensive model is developed for high-temperature SOFCs that include the momentum, species, energy, and charge transport equations. Furthermore, the bilinear elastoplastic model is used for the calculation of thermal stresses and failure of solids. Two-dimensional functionally graded electrodes are studied in which the grading is implemented in the thickness and length directions. Results indicate that continuous one-dimensional grading functions reduced thermal stresses by 40% for m = 0.8 compared with conventional electrodes. It also improved the electrochemical performance, as the maximum power density increased by 15%. For the 2D piecewise linear grading function, a further improvement of reducing thermal stresses by an extra 16.5% is obtained. Two-dimensional graded SOFCs can therefore operate at higher temperatures safely in terms of thermal stresses. This creates an opportunity to fabricate high-temperature, compact SOFCs for high-power applications.

References

1.
Saied
,
M.
,
Ahmed
,
K.
,
Nemat-Alla
,
M.
,
Ahmed
,
M.
, and
El-Sebaie
,
M.
,
2018
, “
Performance Study of Solid Oxide Fuel Cell With Various Flow Field Designs: Numerical Study
,”
Int. J. Hydrogen Energy
,
43
(
45
), pp.
20931
20946
.
2.
Osman
,
S.
,
Ookawara
,
S.
, and
Ahmed
,
M.
,
2021
, “
Carbon Dioxide Bubbles Removal by Capillary Actuation in the Anode Channel of Direct Methanol Fuel Cells
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
090903
.
3.
El-Zoheiry
,
R. M.
,
Mori
,
S.
, and
Ahmed
,
M.
,
2019
, “
Using Multi-Path Spiral Flow Fields to Enhance Under-Rib Mass Transport in Direct Methanol Fuel Cells
,”
Int. J. Hydrogen Energy
,
44
(
58
), pp.
30663
30681
.
4.
El-Zoheiry
,
R. M.
,
Ookawara
,
S.
, and
Ahmed
,
M.
,
2017
, “
Efficient Fuel Utilization by Enhancing the Under-Rib Mass Transport Using New Serpentine Flow Field Designs of Direct Methanol Fuel Cells
,”
Energy Convers. Manag.
,
144
, pp.
88
103
.
5.
Saied
,
M.
,
Ahmed
,
K.
,
Ahmed
,
M.
,
Nemat-Alla
,
M.
, and
El-Sebaie
,
M.
,
2017
, “
Investigations of Solid Oxide Fuel Cells With Functionally Graded Electrodes for High Performance and Safe Thermal Stress
,”
Int. J. Hydrogen Energy
,
42
(
24
), pp.
15887
15902
.
6.
Song
,
H. S.
,
Lee
,
S.
,
Lee
,
D.
,
Kim
,
H.
,
Hyun
,
S. H.
,
Kim
,
J.
, and
Moon
,
J.
,
2010
, “
Functionally-Graded Composite Cathodes for Durable and High Performance Solid Oxide Fuel Cells
,”
J. Power Sources
,
195
(
9
), pp.
2628
2632
.
7.
Holtappels
,
P.
, and
Bagger
,
C.
,
2002
, “
Fabrication and Performance of Advanced Multi-Layer SOFC Cathodes
,”
J. Eur. Ceram. Soc.
,
22
(
1
), pp.
41
48
.
8.
Liu
,
Y.
,
Compson
,
C.
, and
Liu
,
M.
,
2004
, “
Nanostructured and Functionally Graded Cathodes for Intermediate Temperature Solid Oxide Fuel Cells
,”
J. Power Sources
,
138
(
1–2
), pp.
194
198
.
9.
Xia
,
C.
,
Rauch
,
W.
,
Wellborn
,
W.
, and
Liu
,
M.
,
2002
, “
Functionally Graded Cathodes for Honeycomb Solid Oxide Fuel Cells
,”
Electrochem. Solid-State Lett.
,
5
(
10
), pp.
217
220
.
10.
Anandakumar
,
G.
,
Li
,
N.
,
Verma
,
A.
,
Singh
,
P.
, and
Kim
,
J. H.
,
2010
, “
Thermal Stress and Probability of Failure Analyses of Functionally Graded Solid Oxide Fuel Cells
,”
J. Power Sources
,
195
(
19
), pp.
6659
6670
.
11.
He
,
S.
,
Dai
,
H.
,
Cai
,
G.
,
Chen
,
H.
, and
Guo
,
L.
,
2015
, “
Optimization of La0.75Sr0.25Cr0.5Mn0.5O3-δ-Ce0.8Sm0.2O1.9 Compositionally Graded Anode Functional Layer
,”
Electrochim. Acta
,
152
, pp.
155
160
.
12.
Nemat-Alla
,
M.
,
2003
, “
Reduction of Thermal Stresses by Developing Two-Dimensional Functionally Graded Materials
,”
Int. J. Solids Struct.
,
40
(
26
), pp.
7339
7356
.
13.
Osman
,
S.
,
Ahmed
,
K.
,
Nemattalla
,
M.
,
Ookawara
,
S.
, and
Ahmed
,
M.
,
2021
, “
Performance and Thermal Stresses in Functionally Graded Anode-Supported Honeycomb Solid-Oxide Fuel Cells
,”
Int. J. Hydrogen Energy.
,
46
(
65
), pp.
33010
33027
.
14.
Bessette
,
N. F.
, and
Wepfer
,
W. J.
,
1995
, “
Prediction of Solid Oxide Fuel Cell Power System Performance Through Multi-Level Modeling
,”
ASME J. Energy Resour. Technol.
,
117
(
4
), pp.
307
317
.
15.
Jiang
,
W.
,
Fang
,
R.
,
Dougal
,
R. A.
, and
Khan
,
J. A.
,
2008
, “
Thermoelectric Model of a Tubular SOFC for Dynamic Simulation
,”
ASME J. Energy Resour. Technol.
,
130
(
2
), p.
022601
.
16.
Weissman
,
S. A.
, and
Anderson
,
N. G.
,
2015
, “
Design of Experiments (DoE) and Process Optimization. A Review of Recent Publications
,”
Org. Process Res. Dev.
,
19
(
11
), pp.
1605
1633
.
17.
Fang
,
K.-T.
,
Lin
,
D. K. J.
,
Winker
,
P.
, and
Zhang
,
Y.
,
2000
, “
Uniform Design: Theory and Application
,”
Technometrics
,
42
(
3
), pp.
237
248
.
18.
Yang
,
J.
,
Li
,
L.
,
Yang
,
L.
, and
Li
,
J.
,
2017
, “
Uniform Design for the Parameters Optimization of Pin-Fins Channel Heat Sink
,”
Appl. Therm. Eng.
,
120
, pp.
289
297
.
19.
Zhang
,
Z.
,
Chen
,
J.
,
Yue
,
D.
,
Yang
,
G.
,
Ye
,
S.
,
He
,
C.
,
Wang
,
W.
,
Yuan
,
J.
, and
Huang
,
N.
,
2014
, “
Three-Dimensional CFD Modeling of Transport Phenomena in a Cross-Flow Anode-Supported Planar SOFC
,”
Energies
,
7
(
1
), pp.
80
98
.
20.
Simonet
,
J.
,
Kapelski
,
G.
, and
Bouvard
,
D.
,
2007
, “
A Sedimentation Process for the Fabrication of Solid Oxide Fuel Cell Cathodes With Graded Composition
,”
J. Eur. Ceram. Soc.
,
27
(
10
), pp.
3113
3116
.
21.
Yang
,
Y. Z.
,
Zhang
,
H. O.
,
Wang
,
G. L.
, and
Xia
,
W. S.
,
2007
, “
Fabrication of Functionally Graded SOFC by APS
,”
J. Therm. Spray Technol.
,
16
(
5–6
), pp.
768
775
.
22.
Zha
,
S.
,
Zhang
,
Y.
, and
Liu
,
M.
,
2005
, “
Functionally Graded Cathodes Fabricated by Sol-Gel/Slurry Coating for Honeycomb SOFCs
,”
Solid State Ionics
,
176
(
1–2
), pp.
25
31
.
23.
Roy
,
R. K.
,
2001
,
Design of Experiments Using The Taguchi Approach: 16 Steps to Product and Process Improvement
,
John Wiley & Sons, Inc.
,
New York
.
24.
Haynes
,
W. M.
,
Lide
,
D. R.
, and
Bruno
,
T. J.
,
2017
,
CRC Handbook of Chemistry and Physics
,
CRC Press
,
New York
.
25.
Andersson
,
M.
,
Yuan
,
J.
, and
Sundén
,
B.
,
2012
, “
SOFC Modeling Considering Electrochemical Reactions at the Active Three Phase Boundaries
,”
Int. J. Heat Mass Transf.
,
55
(
4
), pp.
773
788
.
26.
Todd
,
B.
, and
Young
,
J. B.
,
2002
, “
Thermodynamic and Transport Properties of Gases for Use in Solid Oxide Fuel Cell Modelling
,”
J. Power Sources
,
110
(
1
), pp.
186
200
.
27.
Løken
,
A.
,
Ricote
,
S.
, and
Wachowski
,
S.
,
2018
, “
Thermal and Chemical Expansion in Proton Ceramic Electrolytes and Compatible Electrodes
,”
Crystals
,
8
(
9
), p.
365
.
28.
Ni
,
D. W.
,
Charlas
,
B.
,
Kwok
,
K.
,
Molla
,
T. T.
,
Hendriksen
,
P. V.
, and
Frandsen
,
H. L.
,
2016
, “
Influence of Temperature and Atmosphere on the Strength and Elastic Modulus of Solid Oxide Fuel Cell Anode Supports
,”
J. Power Sources
,
311
, pp.
1
12
.
29.
Aksenova
,
T. V.
,
Gavrilova
,
L. Ya.
, and
Cherepanov
,
V. A.
,
2012
, “
Crystal Structure and Physicochemical Properties of Doped Lanthanum Manganites
,”
Russ. J. Phys. Chem. A
,
86
(
12
), pp.
1862
1868
.
30.
Nakajo
,
A.
,
Kuebler
,
J.
,
Faes
,
A.
,
Vogt
,
U. F.
,
Schindler
,
H. J.
,
Chiang
,
L.K.
,
Modena
,
S.
,
Van herle
,
J.
, and
Hocker
,
T.
,
2012
, “
Compilation of Mechanical Properties for the Structural Analysis of Solid Oxide Fuel Cell Stacks. Constitutive Materials of Anode-Supported Cells
,”
Ceram. Inter.
,
38
(
5
), pp.
3907
3927
.
31.
Hayashi
,
H.
,
Saitou
,
T.
,
Maruyama
,
N.
,
Inaba
,
H.
,
Kawamura
,
K.
, and
Mori
,
M.
,
2005
, “
Thermal Expansion Coefficient of Yttria Stabilized Zirconia for Various Yttria Contents
,”
Solid State Ionics
,
176
(
5–6
), pp.
613
619
.
32.
Adams
,
J. W.
,
Ruh
,
R.
, and
Mazdiyasni
,
K. S.
,
1997
, “
Young's Modulus, Flexural Strength, and Fracture of Yttria-Stabilized Zirconia versus Temperature
,”
J. Am. Ceram. Soc.
,
80
(
4
), pp.
903
908
.
You do not currently have access to this content.