Abstract

Energy savings and emission reductions are essential for internal engines. Turbocharger is critical for engine system performance and emission. In this study, the engine simulation program was used to systematically optimize the engine turbocharger system performance. The velocity ratio concept was used in the engine simulation program to consider the performance impacts of the wheel diameter ratio between compressor and turbine. An integral consideration for both compressor and turbine was proposed to design the new turbocharger. An optimization process was used to design the compressor. The performance and mechanical integrity assessments for final designs by using computational fluid dynamics (CFD) and finite element analysis (FEA) solvers were reported in this paper. The optimized compressor wheel has some distiguished features comparing with conventional designs. In this design, the splitter is not located at the middle between the two main blades; the compressor wheel exit diameter at shroud is larger than exit diamerer at the hub. The new compressor was tested on both gas stand and engine. The numerical results are fairly agreed with gas stand tests. The tests showed about 1.2% of the engine BSFC reduction without sacrificing the emission and cost. This study demonstrated that a systematic method in simulation and a compressor design optimization process could optimize the engine system and improve the engine performance.

References

1.
Anton
,
N.
,
2019
, “
Engine Optimized Turbine Design
,” Doctoral thesis,
KTH Royal Institute of Technology
,
Stockholm, Sweden
.
2.
OECD
,
2010
, “
Reducing Transport Greenhouse Gas Emissions. Trends & Data 2010
,”
OECD and International Transport Forum
,
Copenhagen, Denmark
, pp.
1
94
.
3.
Panting
,
J.
,
Pullen
,
K. R.
, and
Martinez-Botas
,
R. F.
,
2001
, “
Turbocharger Motor–Generator for Improvement of Transient Performance in an Internal Combustion Engine
,”
Proc. Inst. Mech. Eng., Part D
,
215
(
3
), pp.
369
383
.
4.
Ntonas
,
K.
,
Aretakis
,
N.
,
Roumeliotis
,
I.
, and
Pariotis
,
E.
,
2020
, “
Integrated Simulation Framework for Assessing Turbocharger Fault Effects on Diesel-Engine Performance and Operability
,”
J. Energy Eng.
,
146
(
4
), p.
04020023
.
5.
Gupta
,
A. K.
, and
Mishra
,
A.
,
2014
, “
Design and Development of Inlet Manifold for Six Cylinder Engine for Truck Application
,”
Paripex Indian J. Res.
,
3
(
7
), pp.
1
4
.
6.
Muqeem
,
M.
,
Ahmad
,
M.
, and
Sherwani
,
A. F.
,
2015
, “
Turbocharging of Diesel Engine for Improving Performance and Exhaust Emissions: A Review
,”
IOSR J. Mech. Civ. Eng.
,
12
(
4
), pp.
22
29
.
7.
Vítek
,
O.
,
Macek
,
J.
, and
Polášek
,
M.
,
2006
, “
New Approach to Turbocharger Optimization using 1-D Simulation Tools
,” SAE Technical Paper 2006-01-0438.
SAE 2006 World Congress & Exhibition
.
8.
Emara
,
K.
,
Emara
,
A.
,
Sayed
,
E.
, and
Razek
,
A.
,
2016
, “
Turbocharger Selection and Matching Criteria in a Heavy Duty Diesel Engine
,”
Int. J. Sci. Eng. Res.
,
7
(
12
), pp.
609
615
.
9.
Hawley
,
J.
,
Wallace
,
F.
,
Cox
,
A.
,
Horrocks
,
R.
, and
Bird
,
G.
,
1999
, “
Variable Geometry Turbocharging for Lower Emissions and Improved Torque Characteristics
,”
Proc. Inst. Mech. Eng., Part D
,
213
(
2
), pp.
145
159
.
10.
Giakoumis
,
E. G.
, and
Tziolas
,
V.
,
2018
, “
Modeling a Variable-Geometry Turbocharged Diesel Engine Under Steady-State and Transient Conditions
,”
J. Energy Eng.
,
144
(
3
), p.
04018017
.
11.
Xu
,
C.
, and
Amano
,
R. S.
,
2010
, “
Study of the Flow in Centrifugal Compressor
,”
Int. J. Fluid Mach. Syst.
,
3
(
3
), pp.
260
270
.
12.
Xu
,
C.
, and
Amano
,
R. S.
,
2012
, “
Empirical Design Considerations for Industrial Centrifugal Compressors
,”
Int. J. Rotating Mach.
,
2012
, pp.
1
15
.
13.
Xu
,
C.
, and
Amano
,
R. S.
,
2012
, “
Meridional Considerations of the Centrifugal Compressor Development
,”
Int. J. Rotating Mach.
,
2012
, pp.
1
11
.
14.
Xu
,
C.
, and
Amano
,
R. S.
,
2017
, “
Effects of Asymmetric Radial Clearance on Performance of a Centrifugal Compressor
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052003
.
15.
Xu
,
C.
, and
Amano
,
R. S.
,
2017
, “
Centrifugal Compressor Performance Improvements Through Impeller Splitter Location
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
051201
.
16.
Fredriksson
,
C.
, and
Baines
,
N. C.
, “
The Mixed Flow Forward Swept Turbine For Next Generation Turbocharged Downsized Automotive Engines
,”
ASME Turbo Expo 2010
, p.
GT2010-23366
.
17.
GT-Power Users’sManual
,
2003
,
GT-Suite Version 6.0
,
Gamma Technologies Inc.
18.
Xu
,
C.
, and
Amano
,
R. S. C.
,
2009
, “
On the Development of Turbomachine Blade Aerodynamic Design System
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
10
(
3
), pp.
186
196
.
19.
Atac
,
O. F.
,
Yun
,
J.-E.
, and
Noh
,
T.
,
2018
, “
Aerodynamic Design Optimization of a Micro Radial Compressor of a Turbocharger
,”
Energies
,
11
(
7
), p.
1827
.
20.
Hosseinpour
,
J.
,
Howard
,
J.
,
Chen
,
J.
, and
Engeda
,
A.
,
2022
, “
Challenges for Developing and Marketing a Brayton-Cycle-Based Power Genset gas Turbine Using Supercritical CO2 and a Compressor Design for Simple Recuperated Cycle
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032101
.
21.
Xu
,
C.
, and
Amano
,
R. S.
,
2019
, “
The Performance Influences of a Centrifugal Compressor due to Volute Local Deformation
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
091202
.
22.
Xu
,
C.
,
2007
, “
Design Experience and Considerations for Centrifugal Compressor Development
,”
Proc. Inst. Mech. Eng., Part G
,
221
(
2
), pp.
273
287
.
23.
Xu
,
C.
,
Chen
,
L.
, and
Amano
,
R. S.
,
2019
, “
Design System Development for a Fuel Cell Centrifugal Compressor
,”
J. Adv. Res. Fluid Mech. Therm. Sci.
,
5
(
4
), pp.
96
101
.
24.
ANSYS Inc.
,
2016
,
Ansysv17.2
,
ANSYS Inc
,
Canonsburg, PA, USA
.
25.
Xu
,
C.
,
Chen
,
L.
, and
Amano
,
R. S.
,
2020
, “
Design and Analysis of Energy-Efficient low Flow Centrifugal Compressors
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
081307
.
26.
Xu
,
C.
, and
Amano
,
R. S.
,
2008
, “Design and Optimization of Power System Compressors,”
Thermal Engineering in Power Systems
,
WIT Press
,
UK
27.
Amano
,
R. S.
,
Engeda
,
A.
,
Gupta
,
A. K.
,
Sunden
,
B.
, and
Xu
,
C.
,
2012
, “
Industrial Compressor
,”
Int. J. Rotating Mach.
,
2012
, p.
370425
.
28.
Xu
,
C.
, and
Amano
,
R. S.
,
2010
, “
Computational Analysis of Scroll Tongue Shapes to Compressor Performance by Using Different Turbulence Models
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
11
(
2
), pp.
85
99
.
29.
Xu
,
C.
, and
Amano
,
R. S.
,
2009
, “
Development of a Low Flow Coefficient Single Stage Centrifugal Compressor
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
10
(
4
), pp.
282
289
.
30.
Xu
,
C.
, and
Amano
,
R. S.
,
2009
, “
The Development of Centrifugal Compressor Impeller
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
10
(
4
), pp.
290
301
.
31.
Xu
,
C.
, and
Amano
,
R. S.
,
2008
, “
Computational Analysis of Swept Compressor Rotor Blade
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
9
(
6
), pp.
374
382
.
32.
Amano
,
R. S.
,
Lee
,
E. K.
,
Xu
,
C.
, and
Xie
,
J.
,
2005
, “
Investigation of the Unsteady Flow Generated by an Axial Fan-Experimental Testing and Simulations
,”
Int. J. Rotating Mach.
,
2005
(
3
), pp.
256
263
.
You do not currently have access to this content.