Abstract

Effective separation of water and oil dispersions is considered a critical step in the determination of technical and economic success in the petroleum industry over the years. Moreover, a deeper understanding of the emulsification process and different affected parameters is essential for cost-effective oil production, transportation, and downstream processing. Numerous studies conducted on the concept of dispersion characterization indicate the importance of this concept, which deserves attention by the scientific community. Therefore, a comprehensive review study with critical analysis on significant concepts will help readers follow them easily. This study is a comprehensive review of the concept of dispersion characterization and conducted studies recently published. The main purposes of this review are to: (1) highlight flaws, (2) outline gaps and weaknesses, (3) address conflicts, (4) prevent duplication of effort, and (5) list factors affecting dispersion. It was found that the separation efficiency and stability of dispersions are affected by different chemical and physical factors. Factors affecting the stability of the emulsions have been studied in detail and will help to look for the right action to ensure stable emulsions. In addition, methods of ensuring stability, especially coalescence are highlighted, and coalescence mathematical explanations of phenomena are presented.

References

1.
Pal
,
R.
,
2006
,
Rheology of Particulate Dispersions and Composites
,
CRC Press
,
Boca Raton, FL
.
2.
Vandermeulen
,
J. H.
, and
Hrudey
,
S. E.
,
2013
,
Oil in Freshwater: Chemistry, Biology, Countermeasure Technology: Proceedings of the Symposium of Oil Pollution in Freshwater
,
Pergamon
,
Edmonton, Alberta, Canada
.
3.
Yuan
,
S.
,
Dabirian
,
R.
,
Shoham
,
O.
, and
Mohan
,
R. S.
,
2020
, “
Numerical Simulation of Liquid Droplet Coalescence and Breakup
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
102101
.
4.
Torres
,
C. F.
,
Mohan
,
R. S.
,
Gomez
,
L. E.
, and
Shoham
,
O.
,
2016
, “
Oil–Water Flow Pattern Transition Prediction in Horizontal Pipes
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022904
.
5.
Gavrielatos
,
I.
,
Dabirian
,
R.
,
Mohan
,
R. S.
, and
Shoham
,
O.
,
2019
, “
Oil/Water Emulsions Stabilized by Nanoparticles of Different Wettabilities
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
021301
.
6.
Dabirian
,
R.
,
Cui
,
S.
,
Gavrielatos
,
I.
,
Mohan
,
R.
, and
Shoham
,
O.
,
2018
, “
Evaluation of Models for Droplet Shear Effect of Centrifugal Pump
,”
Proceedings of the Fluids Engineering Division Summer Meeting
,
Montreal, Quebec, Canada
,
American Society of Mechanical Engineers
, p.
V001T006A014
.
7.
Nunez
,
C.
,
Dabirian
,
R.
,
Gavrielatos
,
I.
,
Mohan
,
R. S.
, and
Shoham
,
O.
, “
Effect of Particle Wettability on Mineral oil-Distilled Water Emulsion Stability
,”
Proceedings of the 8th World Congress on Particle Technology, AIChE.
8.
Gavrielatos
,
I.
,
Dabirian
,
R.
,
Mohan
,
R. S.
, and
Shoham
,
O.
, “
Separation Kinetics of oil/Water Emulsions Stabilized by Nanoparticles
,”
Proceedings of the Fluids Engineering Division Summer Meeting
,
American Society of Mechanical Engineers
, p.
V01BT10A005
.
9.
Dabirian
,
R.
,
Mohan
,
R.
,
Shoham
,
O.
, and
Kouba
,
G.
,
2018
, “
Sand Transport in Slightly Upward Inclined Multiphase Flow
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072901
.
10.
Remington
,
J. P.
,
Troy
,
D. B.
, and
Beringer
,
P.
,
2006
,
Remington: The Science and Practice of Pharmacy
,
Lippincott Williams & Wilkins
,
Philadelphia, PA
.
11.
Childs
,
J. D.
,
Acosta
,
E.
,
Scamehorn
,
J. F.
, and
Sabatini
,
D. A.
,
2005
, “
Surfactant-enhanced Treatment of oil-Based Drill Cuttings
,”
ASME J. Energy Resour. Technol.
,
127
(
2
), pp.
153
162
.
12.
Lan
,
Q.
,
Su
,
C. M.
,
Liu
,
W. R.
,
Yang
,
F.
,
Guo
,
B. Y.
, and
Sun
,
D. J.
,
2006
, “
Emulsions and Emulsifying Technique and Their Application in Drilling and Completion Fluid Technology
,”
Drill. Fluid Completion Fluid
,
23
(
2
), pp.
61
69
.
13.
Sharma
,
P.
,
Kostarelos
,
K.
, and
Palayangoda
,
S. S.
,
2019
, “
Hydrocarbon Recovery From oil Sands by Cyclic Surfactant Solubilization in Single-Phase Microemulsions
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
085001
.
14.
Ezeh
,
C. G.
,
Duan
,
Y.
,
Rausa
,
R.
, and
Papadopoulos
,
K. D.
,
2019
, “
Mobilization of Crude Oil in Porous Media With Oil-Soluble Surfactant Delivered by Hydrosoluble Micelles
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032902
.
15.
Barati-Harooni
,
A.
,
Najafi-Marghmaleki
,
A.
,
Hosseini
,
S. M.
, and
Moradi
,
S.
,
2017
, “
Experimental Investigation of Dynamic Adsorption–Desorption of New Nonionic Surfactant on Carbonate Rock: Application to Enhanced Oil Recovery
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042202
.
16.
Lu
,
C.
,
Zhao
,
W.
,
Liu
,
Y.
, and
Dong
,
X.
,
2018
, “
Pore-scale Transport Mechanisms and Macroscopic Displacement Effects of in-Situ oil-in-Water Emulsions in Porous Media
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102904
.
17.
Liu
,
D.
,
Fan
,
M.
,
Yao
,
L.
,
Zhao
,
X.
, and
Wang
,
Y.
,
2010
, “
A new Fracturing Fluid with Combination of Single Phase Microemulsion and Gelable Polymer System
,”
J. Pet. Sci. Eng.
,
73
(
3–4
), pp.
267
271
.
18.
Gupta
,
D.
,
Hlidek
,
B. T.
,
Hill
,
E. S. W.
, and
Dinsa
,
H. S.
, “
Fracturing Fluid for low Permeability Gas Reservoirs: Emulsion of Carbon Dioxide With Aqueous Methonol Base Fluid: Chemistry and Applications
,”
Proceedings of the SPE Hydraulic Fracturing Technology Conference
,
Society of Petroleum Engineers
.
19.
Bannwart
,
A. C.
,
Rodriguez
,
O. M.
,
de Carvalho
,
C. H.
,
Wang
,
I. S.
, and
Vara
,
R. M.
,
2004
, “
Flow Patterns in Heavy Crude oil-Water Flow
,”
ASME J. Energy Resour. Technol.
,
126
(
3
), pp.
184
189
.
20.
Fairuzov
,
Y. V.
,
Arenas-Medina
,
P.
,
Verdejo-Fierro
,
J.
, and
Gonzalez-Islas
,
R.
,
2000
, “
Flow Pattern Transitions in Horizontal Pipelines Carrying oil-Water Mixtures: Full-Scale Experiments
,”
ASME J. Energy Resour. Technol.
,
122
(
4
), pp.
169
176
.
21.
Shang
,
W.
, and
Sarica
,
C.
,
2013
, “
A Model for Temperature Prediction for Two-Phase Oil/Water Stratified Flow
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032906
.
22.
Shi
,
H.
,
Cai
,
J.
, and
Jepson
,
W.
,
2001
, “
Oil-Water Two-Phase Flows in Large-Diameter Pipelines
,”
ASME J. Energy Resour. Technol.
,
123
(
4
), pp.
270
276
.
23.
Taleghani
,
N. D.
, and
Tyagi
,
M.
,
2017
, “
Impacts of Major Offshore oil Spill Incidents on Petroleum Industry and Regional Economy
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022913
.
24.
Shi
,
G.
,
Shen
,
Y.
,
Mu
,
P.
,
Wang
,
Q.
,
Yang
,
Y.
,
Ma
,
S.
, and
Li
,
J.
,
2020
, “
Effective Separation of Surfactant-Stabilized Crude Oil-in-Water Emulsions by Using Waste Brick Powder-Coated Membranes Under Corrosive Conditions
,”
J. Green Chem.
,
22
(
4
), pp.
1345
1352
.
25.
Raya
,
S. A.
,
Saaid
,
I. M.
,
Ahmed
,
A. A.
, and
Umar
,
A. A.
,
2020
, “
A Critical Review of Development and Demulsification Mechanisms of Crude oil Emulsion in the Petroleum Industry
,”
J. Pet. Explor. Prod. Technol.
,
10
(
4
), pp.
1711
1728
.
26.
de Villiers
,
M. M.
,
Aramwit
,
P.
, and
Kwon
,
G. S.
,
2009
,
Nanotechnology in Drug Delivery, Springer, Biotechnology: Pharmaceutical Aspects.
,
Springer-Verlag
,
New York
.
27.
Nädler
,
M.
, and
Mewes
,
D.
,
1995
, “
The Effect of Gas Injection on the Flow of Immiscible Liquids in Horizontal Pipes
,”
Chem. Eng. Technol.
,
18
(
3
), pp.
156
165
.
28.
Trallero
,
J. L.
,
1995
,
Oil–Water Flow Patterns in Horizontal Pipes
,
ProQuest Dissertations Publishing
,
Tulsa, OK
.
29.
Yuan
,
S.
,
Dabirian
,
R.
,
Mohan
,
R. S.
, and
Shoham
,
O.
, “
Simulation of Coalescence and Breakup of Dispersed Water Droplets in Continuous Oil Phase
,”
Proceedings of the Fluids Engineering Division Summer Meeting
,
American Society of Mechanical Engineers
, p.
V001T006A011
.
30.
Loh
,
W.
, and
Premanadhan
,
V. K.
,
2016
, “
Experimental Investigation of Viscous oil-Water Flows in Pipeline
,”
J. Pet. Sci. Eng.
,
147
, pp.
87
97
.
31.
Adamson
,
A. W.
, and
Gast
,
A. P.
,
1967
,
Physical Chemistry of Surfaces
,
Interscience Publishers
,
New York
.
32.
Aveyard
,
R.
, and
Haydon
,
D. A.
,
1973
,
An Introduction to the Principles of Surface Chemistry
,
CUP Archive
,
Cambridge, UK
.
33.
OpenStaxCollege
,
2018
,
College Physics, Chapter 12. Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action
,
OpenStax
,
Houston, TX
.
34.
Adamson
,
A. W.
, and
Gast
,
A. P.
,
1967
,
Physical Chemistry of Surfaces
.
35.
Nielsen
,
D. M.
,
2005
,
Practical Handbook of Environmental Site Characterization and Ground-Water Monitoring
,
CRC Press
,
Boca Raton, FL
.
36.
Kumar
,
B.
,
2012
,
Effect of Salinity on the Interfacial Tension of Model and Crude oil Systems
,
University of Calgary
.
37.
Al-Bazali
,
T. M.
,
Zhang
,
J.
,
Chenevert
,
M. E.
, and
Sharma
,
M. M.
, “
Estimating the Reservoir Hydrocarbon Capacity Through Measurement of the Minimum Capillary Entry Pressure of Shale Caprocks
,”
Proceedings of the SPE Annual Technical Conference and Exhibition
,
Society of Petroleum Engineers
.
38.
Vavra
,
C. L.
,
Kaldi
,
J. G.
, and
Sneider
,
R. M.
,
1992
, “
Geological Applications of Capillary Pressure: A Review
,”
AAPG Bull.
,
76
(
6
), pp.
840
850
.
39.
Fanchi
,
J. R.
,
2005
,
Principles of Applied Reservoir Simulation
,
Elsevier
,
New York
.
40.
Purcell
,
W. R.
,
1949
, “
Capillary Pressures-Their Measurement Using Mercury and the Calculation of Permeability Therefrom
,”
J. Pet. Technol.
,
1
(
2
), pp.
39
48
.
41.
O'Connor
,
S. J.
,
2000
, “
Hydrocarbon-Water Interfacial Tension Values at Reservoir Conditions: Inconsistencies in the Technical Literature and the Impact on Maximum oil and Gas Column Height Calculations
,”
AAPG Bull.
,
84
(
10
), pp.
1537
1541
.
42.
Mark
,
H. F.
,
2013
,
Encyclopedia of Polymer Science and Technology
,
John Wiley & Sons
,
New York
.
43.
Nädler
,
M.
, and
Mewes
,
D.
,
1997
, “
Flow Induced Emulsification in the Flow of two Immiscible Liquids in Horizontal Pipes
,”
Int. J. Multiphase Flow
,
23
(
1
), pp.
55
68
.
44.
Abismaı¨l
,
B.
,
Canselier
,
J. P.
,
Wilhelm
,
A. M.
,
Delmas
,
H.
, and
Gourdon
,
C.
,
1999
, “
Emulsification by Ultrasound: Drop Size Distribution and Stability
,”
Ultrason. Sonochem.
,
6
(
1–2
), pp.
75
83
.
45.
Ludwig
,
A.
,
Flechtner
,
U.
,
Prüss
,
J.
, and
Warnecke
,
H. J.
,
1997
, “
Formation of Emulsions in a Screw Loop Reactor
,”
Chem. Eng. Technol.: Ind. Chem. Plant Equip. Process Eng. Biotechnol.
,
20
(
3
), pp.
149
161
.
46.
Lloyd
,
D. M.
,
Norton
,
I. T.
, and
Spyropoulos
,
F.
,
2014
, “
Processing Effects During Rotating Membrane Emulsification
,”
J. Membr. Sci.
,
466
, pp.
8
17
.
47.
Ho
,
T. H.
,
Dao
,
T. P. T.
,
Nguyen
,
T. A.
,
Le
,
D. D.
, and
Dang
,
M. C.
,
2013
, “
Cross-flow Membrane Emulsification Technique for Fabrication of Drug-Loaded Particles
,”
Adv. Nat. Sci.: Nanosci. Nanotechnol.
,
4
(
4
), p.
045008
.
48.
Stang
,
M.
,
Schuchmann
,
H.
, and
Schubert
,
H.
,
2001
, “
Emulsification in High-Pressure Homogenizers
,”
Eng. Life Sci.
,
1
(
4
), pp.
151
157
.
49.
Floury
,
J.
,
Desrumaux
,
A.
, and
Lardieres
,
J.
,
2000
, “
Effect of High-Pressure Homogenization on Droplet Size Distributions and Rheological Properties of Model oil-in-Water Emulsions
,”
Innovative Food Sci. Emerging Technol.
,
1
(
2
), pp.
127
134
.
50.
Berkman
,
P. D.
, and
Calabrese
,
R. V.
,
1988
, “
Dispersion of Viscous Liquids by Turbulent Flow in a Static Mixer
,”
AIChE J.
,
34
(
4
), pp.
602
609
.
51.
McClements
,
D. J.
, and
Gumus
,
C. E.
,
2016
, “
Natural Emulsifiers—Biosurfactants, Phospholipids, Biopolymers, and Colloidal Particles: Molecular and Physicochemical Basis of Functional Performance
,”
Adv. Colloid Interface Sci.
,
234
, pp.
3
26
.
52.
Tadros
,
T. F.
,
2013
,
Emulsion Formation and Stability
,
John Wiley & Sons
,
New York
.
53.
Schuster
,
D.
,
1996
,
Encyclopedia of Emulsion Technology
,
CRC Press
,
Boca Raton, FL
.
54.
Walstra
,
P.
,
2002
,
Physical Chemistry of Foods
,
CRC Press
,
Boca Raton, FL
.
55.
Walstra
,
P.
,
1993
, “
Principles of Emulsion Formation
,”
Chem. Eng. Sci.
,
48
(
2
), pp.
333
349
.
56.
Schubert
,
H.
,
1997
,
Advances in the Mechanical Production of Food Emulsions
, Vol.
82
,
Sheffield Academic Press
,
Sheffield, UK
.
57.
Walstra
,
P.
, and
Smulders
,
P. E.
,
1998
, “Emulsion Formation,”
Modern Aspects of Emulsion Science
,
B.P.
Binks
, ed.,
RSC Publishing
,
Cambridge, UK
, pp.
56
99
.
58.
Stone
,
H. A.
,
1994
, “
Dynamics of Drop Deformation and Breakup in Viscous Fluids
,”
Annu. Rev. Fluid Mech.
,
26
(
1
), pp.
65
102
.
59.
McClements
,
D. J.
,
2015
,
Food Emulsions: Principles, Practices, and Techniques
,
CRC Press
,
Boca Raton, FL
.
60.
Kou
,
Z.
, and
Dejam
,
M.
,
2020
, “
Control of Shear Dispersion by the Permeable Porous Wall of a Capillary Tube
,”
Chem. Eng. Technol.
,
43
(
11
), pp.
2208
2214
.
61.
Kou
,
Z.
, and
Dejam
,
M.
,
2019
, “
Dispersion due to Combined Pressure-Driven and Electro-Osmotic Flows in a Channel Surrounded by a Permeable Porous Medium
,”
Phys. Fluids
,
31
(
5
), p.
056603
.
62.
Tropea
,
C.
, and
Yarin
,
A. L.
,
2007
,
Springer Handbook of Experimental Fluid Mechanics
,
Springer Science & Business Media
,
Berlin, Germany
.
63.
Gallino
,
G.
,
Schneider
,
T. M.
, and
Gallaire
,
F.
,
2018
, “
Edge States Control Droplet Breakup in Subcritical Extensional Flows
,”
Phys. Rev. Fluids
,
3
(
7
), p.
073603
.
64.
Elemans
,
P.
,
Bos
,
H.
,
Janssen
,
J.
, and
Meijer
,
H.
,
1993
, “
Transient Phenomena in Dispersive Mixing
,”
Chem. Eng. Sci.
,
48
(
2
), pp.
267
276
.
65.
Tsakalos
,
V. T.
,
Navard
,
P.
, and
Peuvrel-Disdier
,
E.
,
1998
, “
Deformation and Breakup Mechanisms of Single Drops During Shear
,”
J. Rheol.
,
42
(
6
), pp.
1403
1417
.
66.
Zhao
,
X.
,
2007
, “
Drop Breakup in Dilute Newtonian Emulsions in Simple Shear Flow: New Drop Breakup Mechanisms
,”
J. Rheol.
,
51
(
3
), pp.
367
392
.
67.
Hasenhuettl
,
G. L.
, and
Hartel
,
R. W.
,
2008
,
Food Emulsifiers and Their Applications
,
Springer
,
New York
.
68.
Vankova
,
N.
,
Tcholakova
,
S.
,
Denkov
,
N. D.
,
Ivanov
,
I. B.
,
Vulchev
,
V. D.
, and
Danner
,
T.
,
2007
, “
Emulsification in Turbulent Flow: 1. Mean and Maximum Drop Diameters in Inertial and Viscous Regimes
,”
J. Colloid Interface Sci.
,
312
(
2
), pp.
363
380
.
69.
Hinze
,
J.
,
1955
, “
Fundamentals of the Hydrodynamic Mechanism of Splitting in Dispersion Processes
,”
AIChE J.
,
1
(
3
), pp.
289
295
.
70.
Maindarkar
,
S. N.
,
Hoogland
,
H.
, and
Henson
,
M. A.
,
2015
, “
Predicting the Combined Effects of oil and Surfactant Concentrations on the Drop Size Distributions of Homogenized Emulsions
,”
Colloids Surf. A
,
467
, pp.
18
30
.
71.
Peña
,
A. A.
,
Hirasaki
,
G. J.
, and
Miller
,
C. A.
,
2005
, “
Chemically Induced Destabilization of Water-in-Crude oil Emulsions
,”
Ind. Eng. Chem. Res.
,
44
(
5
), pp.
1139
1149
.
72.
Farah
,
M. A.
,
Oliveira
,
R. C.
,
Caldas
,
J. N.
, and
Rajagopal
,
K.
,
2005
, “
Viscosity of Water-in-Oil Emulsions: Variation With Temperature and Water Volume Fraction
,”
J. Pet. Sci. Eng.
,
48
(
3–4
), pp.
169
184
.
73.
Karcher
,
V.
,
Perrechil
,
F. A.
, and
Bannwart
,
A. C.
,
2015
, “
Interfacial Energy During the Emulsification of Water-in-Heavy Crude Oil Emulsions
,”
Braz. J. Chem. Eng.
,
32
(
1
), pp.
127
137
.
74.
Sjoblom
,
J.
,
2001
,
Encyclopedic Handbook of Emulsion Technology
,
CRC Press
,
Boca Raton, FL
.
75.
Pawignya
,
H.
,
Kusworo
,
T. D.
, and
Pramudono
,
B.
,
2019
, “
Kinetic Modeling of Flocculation and Coalescence in the System Emulsion of Water-Xylene-Terbutyl Oleyl Glycosides
,”
Bull. Chem. React. Eng. Catal.
,
14
(
1
), pp.
60
68
.
76.
Binks
,
B.P.
,
2007
, “Emulsions — Recent Advances in Understanding,”
Modern Aspects of Emulsion Science
,
B.P.
Binks
, ed.,
Royal Society of Chemistry
,
London, UK
, pp.
1
55
.
77.
Tadros
,
T.
,
2005
,
Applied Surfactants: Principles and Applications
,
Wiley-VCH, Weinheim
,
Germany
, pp.
115
185
.
78.
Chanamai
,
R.
, and
McClements
,
D. J.
,
2000
, “
Dependence of Creaming and Rheology of Monodisperse oil-in-Water Emulsions on Droplet Size and Concentration
,”
Colloids Surf. A
,
172
(
1–3
), pp.
79
86
.
79.
Srivastava
,
S.
, and
Haydon
,
D.
,
1964
, “
Estimate of the Hamaker Constant for Paraffinic Hydrocarbons in Aqueous Suspensions
,”
Trans. Faraday Soc.
,
60
, pp.
971
978
.
80.
Darling
,
D. F.
,
1982
, “
Recent Advances in the Destabilization of Dairy Emulsions
,”
J. Dairy Res.
,
49
(
4
), pp.
695
712
.
81.
Lips
,
A.
, and
Willis
,
E.
,
1973
, “
Low Angle Light Scattering Technique for the Study of Coagulation
,”
J. Chem. Soc. Faraday Trans. 1: Phys. Chem. Condens. Phases
,
69
, pp.
1226
1236
.
82.
Tornberg
,
E.
, and
Ediriweera
,
N.
,
1988
, “
Factors That Influence the Coalescence Stability of Protein-Stabilised Emulsions, Estimated From the Proportion of oil Extracted by Hexane
,”
J. Sci. Food Agric.
,
46
(
1
), pp.
93
113
.
83.
Denkov
,
N. D.
,
Petsev
,
D. N.
, and
Danov
,
K. D.
,
1995
, “
Flocculation of Deformable Emulsion Droplets: I. Droplet Shape and Line Tension Effects
,”
J. Colloid Interface Sci.
,
176
(
1
), pp.
189
200
.
84.
Petsev
,
D.
,
2004
, “Theory of Emulsion Flocculation,”
Interface Science and Technology
,
Elsevier
,
New York
, pp.
313
350
.
85.
Buscall
,
R.
,
Davis
,
S.
, and
Potts
,
D.
,
1979
, “
The Effect of Long-Chain Alkanes on the Stability of Oil-in-Water Emulsions. The Significance of Ostwald Ripening
,”
Colloid Polym. Sci.
,
257
(
6
), pp.
636
644
.
86.
Weiss
,
J.
,
Canceliere
,
C.
, and
McClements
,
D. J.
,
2000
, “
Mass Transport Phenomena in Oil-in-Water Emulsions Containing Surfactant Micelles: Ostwald Ripening
,”
Langmuir
,
16
(
17
), pp.
6833
6838
.
87.
Kokal
,
S. L.
,
2005
, “
Crude Oil Emulsions: A State-of-the-Art Review
,”
SPE Prod. Facil.
,
20
(
1
), pp.
5
13
.
88.
Deminiere
,
B.
,
Colin
,
A.
,
Calderon
,
F. L.
, and
Bibette
,
J.
,
1998
, “Lifetime and Destruction of Concentrated Emulsions Undergoing Coalescence,”
Modern Aspects of Emulsion Science
,
B. P.
Binks
, ed.,
RSC Publishing
,
Cambridge, UK
, pp.
261
291
.
89.
Mikula
,
R. J.
,
1992
, “Emulsion Characterization,”
Emulsions: Fundamentals and Applications in the Petroleum Industry
,
ACS Publications
,
Washington, DC
, pp.
79
129
.
90.
Dickinson
,
E.
,
1992
,
Introduction to Food Colloids
,
Oxford University Press
,
Oxford, UK
.
91.
Tcholakova
,
S.
,
Denkov
,
N. D.
,
Ivanov
,
I. B.
, and
Campbell
,
B.
,
2002
, “
Coalescence in β-Lactoglobulin-Stabilized Emulsions: Effects of Protein Adsorption and Drop Size
,”
Langmuir
,
18
(
23
), pp.
8960
8971
.
92.
Dickinson
,
E.
, and
Williams
,
A.
,
1994
, “
Orthokinetic Coalescence of Protein-Stabilized Emulsions
,”
Colloids Surf. A
,
88
(
2–3
), pp.
317
326
.
93.
Hotrum
,
N. E.
,
Stuart
,
M. A. C.
,
van Vliet
,
T.
,
Avino
,
S. F.
, and
van Aken
,
G. A.
,
2005
, “
Elucidating the Relationship Between the Spreading Coefficient, Surface-Mediated Partial Coalescence and the Whipping Time of Artificial Cream
,”
Colloids Surf. A
,
260
(
1–3
), pp.
71
78
.
94.
van Aken
,
G. A.
,
2002
, “
Flow-Induced Coalescence in Protein-Stabilized Highly Concentrated Emulsions
,”
Langmuir
,
18
(
7
), pp.
2549
2556
.
95.
Šećerov-Sokolović
,
R. M.
,
Sokolović
,
D. S.
, and
Govedarica
,
D. D.
,
2016
, “
Liquid-Liquid Separation Using Steady-State Bed Coalescer
,”
Hemijska Industrija
,
70
(
4
), pp.
367
381
.
96.
Deraguin
,
B.
, and
Landau
,
L.
,
1941
, “
Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solution of Electrolytes
,”
Acta Physicochim: USSR
,
14
(
1–4
), pp.
633
662
.
97.
Verwey
,
E. J. W.
,
Overbeek
,
J. T. G.
, and
Van Nes
,
K.
,
1948
,
Theory of the Stability of Lyophobic Colloids: The Interaction of Sol Particles Having an Electric Double Layer
,
Elsevier Publishing Company
,
Amsterdam, The Netherlands
.
98.
Ivanov
,
I.
,
1988
,
Thin Liquid Films
,
CRC Press
,
Boca Raton, FL
.
99.
Piorkowski
,
D. T.
, and
McClements
,
D. J.
,
2014
, “
Beverage Emulsions: Recent Developments in Formulation, Production, and Applications
,”
Food Hydrocolloids
,
42
(
1
), pp.
5
41
.
100.
Ivanov
,
I. B.
,
Danov
,
K. D.
, and
Kralchevsky
,
P. A.
,
1999
, “
Flocculation and Coalescence of Micron-Size Emulsion Droplets
,”
Colloids Surf. A
,
152
(
1–2
), pp.
161
182
.
101.
Kralchevsky
,
P. A.
, and
Nagayama
,
K.
,
2001
, “Effect of Oil Drops and Particulates on the Stability of Foams,”
Studies in Interface Science
,
Elsevier
,
New York
, pp.
591
632
.
102.
De Vries
,
A.
,
1958
, “
Foam Stability: Part V. Mechanism of Film Rupture
,”
Recueil des Travaux Chimiques des Pays-Bas
,
77
(
5
), pp.
441
461
.
103.
Derjaguin
,
B.
,
Churaev
,
N.
, and
Muller
,
V.
,
1987
, “
Surface Forces (Consultants Bureau, New York, 1987)
,” Google Scholar, p.
26
.
104.
Derjaguin
,
B.
,
1966
, “
Summarizing Remarks, Colloid Stability
,”
Discuss. Faraday Soc.
,
42
(
42
), pp.
317
321
.
105.
Derjaguin
,
B.
,
1966
, “
Effect of Lyophile Surfaces on the Properties of Boundary Liquid Films
,”
Discuss. Faraday Soc.
,
42
, pp.
109
119
.
106.
Lee
,
S.-T.
,
2004
,
Polymeric Foams
,
CRC press
,
Boca Raton, FL
, pp.
15
29
.
107.
Jeffreys
,
G.
, and
Davies
,
G.
,
1971
, “Coalescence of Liquid Droplets and Liquid Dispersion,”
Recent Advances in Liquid–Liquid Extraction
,
Elsevier
,
New York
, pp.
495
584
.
108.
Aarts
,
D. G.
, and
Lekkerkerker
,
H. N.
,
2008
, “
Droplet Coalescence: Drainage, Film Rupture and Neck Growth in Ultralow Interfacial Tension Systems
,”
J. Fluid Mech.
,
606
, pp.
275
294
.
109.
Basheva
,
E. S.
,
Gurkov
,
T. D.
,
Ivanov
,
I. B.
,
Bantchev
,
G. B.
,
Campbell
,
B.
, and
Borwankar
,
R. P.
,
1999
, “
Size Dependence of the Stability of Emulsion Drops Pressed Against a Large Interface
,”
Langmuir
,
15
(
20
), pp.
6764
6769
.
110.
Eggers
,
J.
,
Lister
,
J. R.
, and
Stone
,
H. A.
,
1999
, “
Coalescence of Liquid Drops
,”
J. Fluid Mech.
,
401
, pp.
293
310
.
111.
Charles
,
G.
, and
Mason
,
S.
,
1960
, “
The Coalescence of Liquid Drops with Flat Liquid/Liquid Interfaces
,”
J. Colloid Sci.
,
15
(
3
), pp.
236
267
.
112.
Danov
,
K. D.
,
Ivanov
,
I. B.
,
Gurkov
,
T. D.
, and
Borwankar
,
R. P.
,
1994
, “
Kinetic Model for the Simultaneous Processes of Flocculation and Coalescence in Emulsion Systems
,”
J. Colloid Interface Sci.
,
167
(
1
), pp.
8
17
.
113.
Ghosh
,
P.
, and
Juvekar
,
V.
,
2002
, “
Analysis of the Drop Rest Phenomenon
,”
Chem. Eng. Res. Des.
,
80
(
7
), pp.
715
728
.
114.
Bozzano
,
G.
, and
Dente
,
M.
,
2011
, “
Modelling the Drop Coalescence at the Interface of two Liquids
,”
Comput. Chem. Eng.
,
35
(
5
), pp.
901
906
.
115.
Lawson
,
G.
,
1967
, “
Coalescence Processes
,”
Chem. Process Eng.
,
48
(
5
), p.
45
.
116.
Nielsen
,
L. E.
,
Wall
,
R.
, and
Adams
,
G.
,
1958
, “
Coalescence of Liquid Drops at oil-Water Interfaces
,”
J. Colloid Sci.
,
13
(
5
), pp.
441
458
.
117.
Zhang
,
M.
,
Dabirian
,
R.
,
Mohan
,
R. S.
, and
Shoham
,
O.
,
2019
, “
Effect of Shear and Water Cut on Phase Inversion and Droplet Size Distribution in Oil–Water Flow
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032905
.
118.
Jeffreys
,
G.
, and
Hawksley
,
J.
,
1965
, “
Coalescence of Liquid Droplets in Two-Component–Two-Phase Systems: Part I. Effect of Physical Properties on the Rate of Coalescence
,”
AIChE J.
,
11
(
3
), pp.
413
417
.
119.
Burrill
,
K.
, and
Woods
,
D.
,
1973
, “
Film Shapes for Deformable Drops at Liquid-Liquid Interfaces. III. Drop Rest-Times
,”
J. Colloid Interface Sci.
,
42
(
1
), pp.
35
51
.
120.
Gillespie
,
T.
, and
Rideal
,
E. K.
,
1956
, “
The Coalescence of Drops at an Oil–Water Interface
,”
Trans. Faraday Soc.
,
52
(
52
), pp.
173
183
.
121.
Allan
,
R.
,
Charles
,
G.
, and
Mason
,
S.
,
1961
, “
The Approach of gas Bubbles to a gas/Liquid Interface
,”
J. Colloid Sci.
,
16
(
2
), pp.
150
165
.
122.
Hanson
,
C.
, and
Brown
,
A.
, “
Secondary Droplet Formation During Drop Coalescence
,”
Proceedings of the Institute of Chemical Engineers Symposium Series
, p.
57
.
123.
Hanson
,
C.
,
2013
,
Recent Advances in Liquid-Liquid Extraction
,
Elsevier
,
New York
.
124.
Lang
,
S. B.
, and
Wilke
,
C.
,
1971
, “
A Hydrodynamic Mechanism for the Coalescence of Liquid Drops. I. Theory of Coalescence at a Planar Interface
,”
Ind. Eng. Chem. Fundam.
,
10
(
3
), pp.
329
340
.
125.
Lang
,
S. B.
, and
Wilke
,
C.
,
1971
, “
A Hydrodynamic Mechanism for the Coalescence of Liquid Drops. II. Experimental Studies
,”
Ind. Eng. Chem. Fundam.
,
10
(
3
), pp.
341
352
.
126.
Cockbain
,
E.
, and
McRoberts
,
T.
,
1953
, “
The Stability of Elementary Emulsion Drops and Emulsions
,”
J. Colloid Sci.
,
8
(
4
), pp.
440
451
.
127.
Angardi
,
V.
,
Mohan
,
R.
, and
Shoham
,
O.
,
2019
, “
Statistical Approach to Estimate Coalescence of a Single Droplet at Interface Affected by Aqueous Phase Composition
,”
J. Pet. Sci. Eng.
,
175
, pp.
804
813
.
128.
Menon
,
V.
, and
Wasan
,
D.
,
1988
, “
Characterization of Oil—Water Interfaces Containing Finely Divided Solids With Applications to the Coalescence of Water-in-Oil Emulsions: A Review
,”
Colloids Surf.
,
29
(
1
), pp.
7
27
.
129.
Husain
,
A.
,
Adewunmi
,
A. A.
,
Mahmoud
,
M.
,
Kamal
,
M. S.
, and
Al-Harthi
,
M. A.
,
2021
, “
Stability of Diesel/Water Emulsions: Experimental and Modeling Investigations
,”
ASME J. Energy Resour. Technol.
,
143
(
11
), p.
112302
.
130.
Szymański
,
A.
,
2008
, “
Determination of Sulfonamide Residues in Food by Micellar Liquid Chromatography
,”
Toxicol. Mech. Methods
,
18
(
6
), pp.
473
481
.
131.
Myers
,
D.
,
2005
,
Surfactant Science and Technology
,
John Wiley & Sons
,
Hoboken, NJ
.
132.
Griffin
,
W. C.
,
1949
, “
Classification of Surface-Active Agents by “HLB”
,”
J. Soc. Cosmet. Chem.
,
1
(
1
), pp.
311
326
.
133.
Wade
,
W. H.
,
Vasquez
,
E.
,
Salager
,
J. L.
,
El-Emary
,
M.
,
Koukounis
,
C.
, and
Schechter
,
R. S.
,
1979
, “
Interfacial Tension and Phase Behavior of Pure Surfactant Systems
,”
Solution Chem. Surfactants
,
18
(
4
), pp.
242
252
.
134.
Salager
,
J.
,
1996
, “Quantifying the Concept of Physico-Chemical Formulation in Surfactant-oil-Water Systems—State of the art,”
Trends in Colloid and Interface Science X
,
Springer
,
New York
, pp.
137
142
.
135.
Acosta
,
E. J.
, and
Bhakta
,
A. S.
,
2009
, “
The HLD-NAC Model for Mixtures of Ionic and Nonionic Surfactants
,”
J. Surfactants Deterg.
,
12
(
1
), pp.
7
19
.
136.
Acosta
,
E. J.
,
2008
, “
The HLD–NAC Equation of State for Microemulsions Formulated With Nonionic Alcohol Ethoxylate and Alkylphenol Ethoxylate Surfactants
,”
Colloids Surf. A
,
320
(
1–3
), pp.
193
204
.
137.
Acosta
,
E.
,
Szekeres
,
E.
,
Sabatini
,
D. A.
, and
Harwell
,
J. H.
,
2003
, “
Net-average Curvature Model for Solubilization and Supersolubilization in Surfactant Microemulsions
,”
Langmuir
,
19
(
1
), pp.
186
195
.
138.
Broze
,
G.
,
1999
,
Handbook of Detergents, Part A: Properties
,
CRC Press
,
Boca Raton, FL
.
139.
Yahaya Khan
,
M.
,
Abdul Karim
,
Z.
,
Aziz
,
A. R. A.
, and
Tan
,
I. M.
,
2017
, “
A Case Study on the Influence of Selected Parameters on Microexplosion Behavior of Water in Biodiesel Emulsion Droplets
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022203
.
140.
Mu
,
J.-H.
,
Li
,
G.-Z.
,
Zhang
,
W.-C.
, and
Wang
,
Z.-W.
,
2001
, “
Determination of the Second CMCs of Dodecyl Polyoxyethylene Polyoxypropylene Ether by the Methods of Cloud Point, Fluorescence, and Viscosity
,”
Colloids Surf. A
,
194
(
1–3
), pp.
1
6
.
141.
Ward
,
A.
, and
Tordai
,
L.
,
1946
, “
Time-Dependence of Boundary Tensions of Solutions I. The Role of Diffusion in Time-Effects
,”
J. Chem. Phys.
,
14
(
7
), pp.
453
461
.
142.
Diamant
,
H.
,
Ariel
,
G.
, and
Andelman
,
D.
,
2001
, “
Kinetics of Surfactant Adsorption: The Free Energy Approach
,”
Colloids Surf. A
,
183–185
, pp.
259
276
.
143.
Politova
,
N. I.
,
Tcholakova
,
S.
,
Tsibranska
,
S.
,
Denkov
,
N. D.
, and
Muelheims
,
K.
,
2017
, “
Coalescence Stability of Water-in-oil Drops: Effects of Drop Size and Surfactant Concentration
,”
Colloids Surf. A
,
531
, pp.
32
39
.
144.
Patist
,
A.
,
Kanicky
,
J. R.
,
Shukla
,
P. K.
, and
Shah
,
D. O.
,
2002
, “
Importance of Micellar Kinetics in Relation to Technological Processes
,”
J. Colloid Interface Sci.
,
245
(
1
), pp.
1
15
.
145.
Evans
,
D. F.
, and
Wennerström
,
H.
,
1999
, “
The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meeting
.”
146.
Gavrielatos
,
I.
,
Mohan
,
R.
, and
Shoham
,
O.
,
2017
, “
Effect of Intermediate Wettability Nanoparticles on Oil-Water Emulsion Stability
,”
J. Pet. Sci. Eng.
,
152
, pp.
664
674
.
147.
Kwon
,
W.-T.
,
Park
,
K.
,
Han
,
S. D.
,
Yoon
,
S. M.
,
Kim
,
J. Y.
,
Bae
,
W.
, and
Rhee
,
Y. W.
,
2010
, “
Investigation of Water Separation From Water-in-Oil Emulsion Using Electric Field
,”
J. Ind. Eng. Chem.
,
16
(
5
), pp.
684
687
.
148.
Martínez-Palou
,
R.
,
Cerón-Camacho
,
R.
,
Chávez
,
B.
,
Vallejo
,
A. A.
,
Villanueva-Negrete
,
D.
,
Castellanos
,
J.
,
Karamath
,
J.
,
Reyes
,
J.
, and
Aburto
,
J.
,
2013
, “
Demulsification of Heavy Crude Oil-in-Water Emulsions: A Comparative Study Between Microwave and Thermal Heating
,”
Fuel
,
113
, pp.
407
414
.
149.
Cheremisinoff
,
N. P.
,
1994
,
Handbook of Water and Wastewater Treatment Technology
,
CRC Press
,
Boca Raton, FL
.
150.
Nikkhah
,
M.
,
Tohidian
,
T.
,
Rahimpour
,
M. R.
, and
Jahanmiri
,
A.
,
2015
, “
Efficient Demulsification of Water-in-Oil Emulsion by a Novel Nano-Titania Modified Chemical Demulsifier
,”
Chem. Eng. Res. Des.
,
94
, pp.
164
172
.
151.
Maaref
,
S.
, and
Ayatollahi
,
S.
,
2018
, “
The Effect of Brine Salinity on Water-in-Oil Emulsion Stability Through Droplet Size Distribution Analysis: a Case Study
,”
J. Dispersion Sci. Technol.
,
39
(
5
), pp.
721
733
.
152.
Tang
,
G.-Q.
, and
Morrow
,
N. R.
,
1999
, “
Influence of Brine Composition and Fines Migration on Crude oil/Brine/Rock Interactions and Oil Recovery
,”
J. Pet. Sci. Eng.
,
24
(
2–4
), pp.
99
111
.
153.
Maaref
,
S.
,
Ayatollahi
,
S.
,
Rezaei
,
N.
, and
Masihi
,
M.
,
2017
, “
The Effect of Dispersed Phase Salinity on Water-in-oil Emulsion Flow Performance: A Micromodel Study
,”
Ind. Eng. Chem. Res.
,
56
(
15
), pp.
4549
4561
.
154.
Moradi
,
M.
,
Alvarado
,
V.
, and
Huzurbazar
,
S.
,
2010
, “
Effect of Salinity on Water-in-Crude oil Emulsion: Evaluation Through Drop-Size Distribution Proxy
,”
Energy Fuels
,
25
(
1
), pp.
260
268
.
155.
Barnea
,
E.
, and
Mizrahi
,
J.
,
1975
, “
Separation Mechanisms of Liquid–Liquid Dispersions in a Deep Layer Gravity Settler. Part IV. Continuous Settler Characteristics
,”
Trans. Inst. Chem. Eng.
,
53
, pp.
83
91
.
156.
Dalingaros
,
W.
,
Jeelani
,
S.
, and
Hartland
,
S.
,
1987
, “
Prediction of Steady-State Dispersion Height in the Disengaging Section of an Extraction Column From Batch Settling Data
,”
Can. J. Chem. Eng.
,
65
(
2
), pp.
210
213
.
157.
Jeelani
,
S.
, and
Hartland
,
S.
,
1998
, “
Effect of Dispersion Properties on the Separation of Batch Liquid−Liquid Dispersions
,”
Ind. Eng. Chem. Res.
,
37
(
2
), pp.
547
554
.
158.
Jeelani
,
S. A. K.
, and
Hartland
,
S.
,
1985
, “
Prediction of Steady State Dispersion Height From Batch Settling Data
,”
AIChE J.
,
31
(
5
), pp.
711
720
.
159.
Panoussopoulos
,
K.
,
Hartland
,
S.
,
Gramme
,
P.
, and
Sontvedt
,
T.
, “
Drop Size and Hold-up Profiles in the Separation of Crude oil-Water Dispersions
,”
Proc. ICHMT Digital Library Online
,
Begel House Inc
.
160.
Henschke
,
M.
,
Schlieper
,
L. H.
, and
Pfennig
,
A.
,
2002
, “
Determination of a Coalescence Parameter From Batch-Settling Experiments
,”
Chem. Eng. J.
,
85
(
2–3
), pp.
369
378
.
161.
Jeelani
,
S.
,
Benoist
,
G.
,
Joshi
,
K.
,
Gunde
,
R.
,
Kellenberger
,
D.
, and
Windhab
,
E. J.
,
2005
, “
Creaming and Aggregation of Particles in Suspensions
,”
Colloids Surf. A
,
263
(
1–3
), pp.
379
389
.
162.
Frising
,
T.
,
Noïk
,
C.
, and
Dalmazzone
,
C.
,
2006
, “
The Liquid/Liquid Sedimentation Process: From Droplet Coalescence to Technologically Enhanced Water/oil Emulsion Gravity Separators: A Review
,”
J. Dispersion Sci. Technol.
,
27
(
7
), pp.
1035
1057
.
163.
Lobo
,
L.
,
Ivanov
,
I.
, and
Wasan
,
D.
,
1993
, “
Dispersion Coalescence: Kinetic Stability of Creamed Dispersions
,”
AIChE J.
,
39
(
2
), pp.
322
334
.
164.
Gomez-Markovich
,
Y.
,
Gomez
,
L.
,
Mohan
,
R.
,
Shoham
,
O.
,
Kouba
,
G.
, and
Avila
,
C.
, “
Dispersion Characterization rig
,”
Proceedings of the ASME 2009 Fluids Engineering Division Summer Meeting
,
American Society of Mechanical Engineers
, pp.
1487
1498
.
165.
Avila
,
C.
,
2006
, “
Interfacial Phenomena in Oil-Water Dispersions
,”
University of Tulsa
.
166.
Tian
,
G.
,
2007
, “
Characterization of Oil-Water Dispersion Shear Flow Through Restrictions
.”
167.
Urdaneta
,
N.
,
2009
, “
Utilization of Dispersion Characterization Rig (DCR) to Study the Effect of Salinity and Demulsifiers on Oil-Water Dispersions Separation
,”
University of Tulsa
,
Tulsa, OK
.
168.
Li
,
H.
,
2010
, “
Modeling and Applications of Differential Dielectric Sensor (DDS) for Multiphase Measurement
,”
University of Tulsa
169.
Parra
,
M. V.
,
2010
, “
Methodology of Oil-Water Dispersions Flow Characterization Using the Dispersion Characterization Rig (DCR)
,”
University of Tulsa
170.
Bikkina
,
P. K.
,
2013
, “
Interfacial Phenomena in Oil-Water-Sand Dispersions
,”
The University of Tulsa
,
Tulsa, OK
.
171.
Zhabagina
,
G.
,
2014
, “
Experimental Investigation of Dilute Crude Oil-Water Dispersions
,”
University of Tulsa
,
Tulsa, OK
.
You do not currently have access to this content.