Abstract

Magnetic Guidance Technology can meet the precise measurement requirements when drilling steam-assisted gravity drainage (SAGD) oil wells. Magnetic generator is a key part in the Magnetic Guidance Technology. When magnetic generator is tripped into horizontal well, pump pressure and passing capacity of the magnetic source generator in the curved section need to be analyzed. So, a mathematical model of tripping in the magnetic generator is established. If curvature radius, deviation angle, and friction factor are known, the forces acting on the magnetic generator in different positions could be calculated. The finite element (FE) results show that: (1) with depth increasing in the curved section, the equivalent stress on the magnetic generator increases in a fluctuating manner, the contact area, friction drag, and energy loss increase. (2) The greater the hole curvature, the greater tripping in force and the higher pump pressure are needed. The lower friction coefficient is favorable to tripping in the magnetic generator. (3) The friction between the magnetic generator and tubing wall in the horizontal section is much less than that in the curved section. Field applications have shown that the maximum downforce is close to the result of finite element analysis. The research results provide a reasonable reference basis for smooth running of magnetic source generators with different trajectory conditions.

References

1.
Yu
,
L.
,
2001
, “
Distribution of World Heavy Oil Reserves and Its Recovery Technologies and Future
,”
Spec. Oil Gas Reservoirs.
,
8
(
2
), pp.
98
103
.
2.
Mousa
,
T.
,
Mahmoud
,
M.
,
Mokheimer
,
E. A.
,
Al-Shehri
,
D.
, and
Patil
,
S.
,
2019
, “
Heavy Oil Recovery Using In-Situ Steam Generated by Thermochemicals: A Numerical Simulation Study
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122903
. 10.1115/1.4043862
3.
Zheng
,
J.
,
Leung
,
J. Y.
,
Sawatzky
,
R. P.
, and
Alvarez
,
J. M.
,
2018
, “
A Proxy Model for Predicting SAGD Production From Reservoirs Containing Shale Barriers
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
122903
. 10.1115/1.4041089
4.
Chen
,
Y.
,
Peng
,
X.
, and
Yu
,
H.
,
2017
, “
Mechanical Performance Experiments on Rock and Cement, Casing Residual Stress Evaluation in the Thermal Recovery Well Based on Thermal-Structure Coupling
,”
Energy Explor. Exploit.
,
35
(
5
), pp.
591
608
. 10.1177/0144598717705048
5.
Wu
,
H.
,
Du
,
Q.
, and
Hou
,
J.
,
2016
, “
Characterization and Prediction of Gas Breakthrough With Cyclic Steam and Gas Stimulation Technique in an Offshore Heavy Oil Reservoir
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032801
. 10.1115/1.4034857
6.
Peng
,
S.
,
Chen
,
Q.
,
Zheng
,
C.
, and
Liu
,
E.
,
2020
, “
Analysis of Particle Deposition in a New-Type Rectifying Plate System During Shale gas Extraction
,”
Energy Sci. Eng.
,
8
(
3
), pp.
702
717
. 10.1002/ese3.543
7.
Zhan
,
S.
,
Haihua
,
P.
,
Guicai
,
Z.
,
Jijiang
,
G. E.
,
Ping
,
J.
, and
Xu
,
C.
,
2020
, “
Research Progresses on Improving Steam-Assisted Gravity Drainage Application for Heavy Oil Recovery
,”
Oilfield Chem.
,
37
(
1
), pp.
185
190
.
8.
Jamshidi
,
T.
,
Zeng
,
F. H.
,
Tontiwachwuthikul
,
P.
, and
Torabi
,
F.
,
2019
, “
Viability of Carbonated Water Injection (CWI) as a Means of Secondary oil Recovery in Heavy oil Systems in Presence and Absence of Wormholes: Microfluidic Experiments
,”
Fuel
,
249
, pp.
286
293
. 10.1016/j.fuel.2019.03.093
9.
Bao-liang
,
L.
,
2010
, “
Study on SAGD Physical Simulation of Thickened Oil in Thin bed
,”
Chem. Eng.
,
24
(
8
), pp.
15
17+20
.
10.
Liu
,
E. B.
,
Lv
,
L. X.
,
Yi
,
Y.
, and
Xie
,
P.
,
2019
, “
Research on the Steady Operation Optimization Model of Natural Gas Pipeline Considering the Combined Operation of Air Coolers and Compressors
,”
IEEE Access
,
7
, pp.
83251
83265
. 10.1109/ACCESS.2019.2924515
11.
Geng
,
L.
,
2007
, “
Study on Dual Horizontal Well SAGD Technology for Ultra Heavy Oil Development in Liao he Oil Province
,”
Spec. Oil Gas Reservoirs
,
14
(
1
), pp.
55
57, 65, 107
.
12.
Chen
,
R.
,
Chen
,
Y.
,
Luo
,
W.
,
Yin
,
B. G.
,
2011
, “
Application and Development of MGT Guided Technology in SAGD Dual Horizontal Wells
,”
Xinjiang Oil Gas
,
7
(
3
), pp.
25
28
.
13.
Li
,
H.
,
Liang
,
L.
, and
Qian
,
Y.
,
2016
, “
Application of New Type of SAGD Technique in Thermal Recovery of Heavy Oil
,”
Sino-Global Energy
,
21
(
9
), pp.
52
56
.
14.
He
,
W.
,
Chen
,
W.
,
Zhao
,
R.
,
Wang
,
Y.
, and
Yang
,
Z.
,
2013
, “
The Impact of Horizontal Well Trajectory Offset on Production by SAGD Process
,”
Xinjiang Pet. Geol.
,
34
(
6
), pp.
669
671
.
15.
Chen
,
X.
,
Sun
,
S.
, and
Tong
,
D.
,
2018
, “
CT Diagnosis of Well Trajectory and Completion Decision Guidance for SAGD Paired Horizontal Wells
,”
Soc. Pet. Eng.
, pp.
1
5
. 10.2118/193368-MS
16.
Kuckes
,
A. F.
,
Hay
,
R. T.
,
Mcmahon
,
J.
,
Nord
,
A. G.
,
Schilling
,
D. A.
, and
Morden
,
J.
,
1996
, “
New Electromagnetic Surveying/Ranging Method for Drilling Parallel Horizontal Twin Wells
,”
SPE Drill. Eng.
,
11
(
2
), pp.
85
90
. 10.2118/27466-PA
17.
Wu
,
Y.
,
Jiang
,
Y.
,
Guan
,
W.
,
He
,
W.
,
Qiu
,
M.
, and
Lv
,
B.
,
2013
, “
Integral Study of the Influence of Well Trajectory on the SAGD Performance
,”
Soc. Pet. Eng
, pp.
1
12
. 10.2118/165443-MS
18.
Moritis
,
G.
,
1995
, “
Heavy Oil Expansions Gather Momentum Worldwide
,”
Oil Gas J.
,
93
(
33
), pp.
31
38
.
19.
Wan
,
R.
, and
Luo
,
Y.
,
1999
,
Oil Production Technical Manual, the Eighth Branch
,
Petroleum Industry Press
,
Beijing, China
.
20.
Li
,
H.
,
Zhang
,
H.
,
Liu
,
Q.
, and
Xiong
,
B.
,
2016
, “
Heavy Oil Thermal Recovery
,”
Petrochem. Ind. Technol.
,
23
(
4
), pp.
86
96
.
21.
Sun
,
X.
,
Zhao
,
C.
,
Xiong
,
W.
,
Li
,
L.
, and
Liang
,
S.
,
2015
, “
Enhanced Oil Recovery in the Late Stage of Shallow Super-Heavy Oil Reservoir With Steam Huff-Puff in Fengcheng Oilfield
,”
Spec. Oil Gas Reservoirs
,
25
(
3
), pp.
72
76+81
. 10.1016/b978-0-12-815905-7.00002-5
22.
Zhang
,
S.
,
Liu
,
F.
, and
Mu
,
B.
,
2017
, “
An Experimental Study on Enhanced Heavy Oil Recovery by Steam Flooding and Chemical Assisted Steam Flooding
,”
Oil Gas Geol.
,
38
(
5
), pp.
1000
1004
. 10.1002/apj.1881
23.
Wang
,
L.
,
Wang
,
Y.
, and
Pang
,
Z.
,
2012
, “
A New Method of Selecting Zone for Thermal Water Flooding After Steam Stimulation in Thin Heavy Oil Reservoir
,”
Sci. Technol. Eng.
,
12
(
15
), pp.
3747
3750
.
24.
Lin
,
J.
,
Song
,
Z.
, and
Luo
,
Y.
,
2009
, “
SAGD Horizontal Drilling Technology
,”
Xinjiang Oil Gas
,
5
(
3
), pp.
56
60,68
.
25.
Yang
,
M.
,
Xia
,
H.
, and
Qu
,
S.
,
2010
, “
Mgt System Applied to Accuracy Well Tracks Controlling In SAGD Horizontal Twin Wells
,”
Drill. Prod. Technol.
,
33
(
3
), pp.
12
14
.
26.
Zhou
,
C.
,
Wang
,
N.
, and
Chen
,
C.
,
2002
, “
The Coiled Tubing Force Analyzing Method for Horizontal Well Operations
,”
Nat. Gas Ind.
,
22
(
4
), pp.
59
60
.
27.
Zhang
,
J.
,
Yi
,
C.
,
Zhang
,
L.
, and
Ma
,
L.
,
2018
, “
Target-Entering Control Technology for SAGD Parallel Horizontal Well Drilling
,”
Oil Drill. Prod. Technol.
,
35
(
6
), pp.
24
28
.
28.
Wan
,
Y.
,
Zhang
,
Z.
,
Sheng
,
C.
,
Wang
,
W.
,
Hu
,
J.
, and
Zhang
,
Z.
,
2016
, “
Shallow Dual Horizontal Well Drilling Technology for SAGD in Zhong18 Well Area of Fengcheng Oilfield
,”
Rock Soil Drill. Tunneling
,
43
(
3
), pp.
41
44,48
.
29.
Zong
,
Y.
,
Wang
,
L.
, and
Shi
,
X.
,
2016
, “
Development and Application of Magnetic Positioning System for SAGD Pairing Horizontal Well
,”
Acta Pet. Sin.
,
37
(
11
), pp.
1428
1434
.
30.
Yang
,
M.
,
Xia
,
H.
,
Qu
,
S.
,
Zhu
,
Z.
, and
Jiang
,
H.
,
2010
, “
Mgt System Applied To Accuracy Well Tracks Controlling In SAGD Horizontal Twin Wells
,”
Drill. Prod. Technol.
,
33
(
3
), pp.
12
14
,140.
31.
Chen
,
Y.
,
Yi
,
H.
, and
He
,
C.
,
2018
, “
Introduction and Investigation of Magnetic Location System for Steam-Assisted Gravity Drainage Dual-Horizontal Heavy oil Wells
,”
Adv. Mech. Eng.
,
10
(
9
), pp.
1
8
. 10.1177/1687814018798978
32.
Grills
,
T. L.
,
2002
, “
Magnetic Ranging Technologies for Drilling Steam Assisted Gravity Drainage Well Pairs and Unique Well Geometries-A Comparison of Technologies
,”
SPE International Thermal Operations and Heavy Oil Symposium and International Horizontal Well Technology Conference
,
Calgary, Alberta, Canada
,
Nov. 4–7
,
Society of Petroleum Engineers
, pp.
1
8
.
33.
Seibi
,
A. C.
,
2000
, “
Running Force in Medium to High-Curvature Wellbores: An Experimental Study and Numerical Simulation of Laboratory and Field Cases
,”
ASME J. Energy Resour. Technol.
,
123
(
2
), pp.
133
137
. 10.1115/1.1365157
34.
Zhang
,
Y.
,
Hao
,
Y.
, and
Samuel
,
R.
,
2013
, “
Analytical Model to Estimate the Drag Forces for Microhole Coiled Tubing Drilling
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
033101
. 10.1115/1.4024044
35.
Yong
,
C.
,
Fei
,
L.
,
Xingguo
,
Z.
,
Ruoming
,
C.
,
Senqiang
,
C.
, and
Zhihui
,
Z.
,
2010
, “
Numerical Simulation of the Running Process of the Casing String in Horizontal Wells
,”
Chin. Pet. Mach.
,
38
(
3
), pp.
28
30
.
36.
Yigit
,
A. S.
, and
Christoforou
,
A. P.
,
2006
, “
Stick-Slip and Bit-Bounce Interaction in Oil-Well Drillstrings
,”
ASME J. Energy Resour. Technol.
,
128
(
4
), pp.
268
274
. 10.1115/1.2358141
37.
Xie
,
S.
,
2017
,
Advanced Mathematics (1)
,
Science Press
,
Beijing, China
.
38.
Chen
,
J.
,
2017
, “
Simulation Experiment of Guiding With a Magnetic Source Inside the Casing of SAGD Twin Well
,”
Explor. Eng.
,
44
(
9
), pp.
21
25
.
39.
Qin
,
D.
, and
Xie
,
L.
,
2011
,
Modern Handbook of Mechanical Design, The Fifth Branch
,
Chemical Industry Press
,
Beijing, China
.
You do not currently have access to this content.