Abstract

Shale reservoirs are characterized with very low productivity due to the high capillary pressure and the ultra-low rock permeability. This article presents an effective treatment to improve the hydrocarbon productivity for shale reservoirs by injecting thermochemical fluids. In this study, several measurements were carried out to determine the effectiveness of the presented treatment. Coreflood, rate transient analysis (RTA), and nuclear magnetic resonance (NMR) measurements were performed. The gas productivity was estimated, before and after the treatment, utilizing the gas flowrates and the pressure drop across the treated rocks. The improvement in gas productivity due to thermochemical fluids was estimated by calculating the productivity index (PI) and the absolute open flow (AOF) before and after the chemical injection. Also, the changes in the pore size distribution, due to chemical injection, were studied using NMR measurements. Results showed that thermochemical treatment can improve the gas productivity by 44%, increase the AOF by 450%, and reduce the capillary pressure by 47%. Also, NMR measurements showed that fractures were induced in the shale rocks after the treatment, which will improve the shale productivity. Ultimately, this study introduces, for the first time, the use of thermochemical fluids to improve the hydrocarbon productivity for shale reservoirs.

References

1.
Wang
,
L.
,
Tian
,
Y.
,
Yu
,
X.
,
Wang
,
C.
,
Yao
,
B.
,
Wang
,
S.
,
Winterfeld
,
P. H.
,
Wang
,
X.
,
Yang
,
Z.
,
Wang
,
Y.
, and
Cui
,
J.
,
2017
, “
Advances in Improved/Enhanced Oil Recovery Technologies for Tight and Shale Reservoirs
,”
Fuel
,
210
, pp.
425
445
. 10.1016/j.fuel.2017.08.095
2.
Du
,
X. D.
,
Gu
,
M.
,
Duan
,
S.
, and
Xian
,
X. F.
,
2017
, “
Investigation of CO2–CH4 Displacement and Transport in Shale for Enhanced Shale Gas Recovery and CO2 Sequestration
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012909
. 10.1115/1.4035148
3.
Seales
,
M. B.
,
2020
, “
Multiphase Flow in Highly Fractured Shale Gas Reservoirs: Review of Fundamental Concepts for Numerical Simulation
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
100801
. 10.1115/1.4046792
4.
Feng
,
X.
,
Ma
,
F.
,
Zhao
,
H.
,
Liu
,
G.
, and
Guo
,
J.
,
2019
, “
Gas Multiple Flow Mechanisms and Apparent Permeability Evaluation in Shale Reservoirs
,”
Sustainability
,
11
(
7
), p.
2114
. 10.3390/su11072114
5.
Kim
,
G.
,
Lee
,
H.
,
Chen
,
Z.
,
Athichanagorn
,
S.
, and
Shin
,
H.
,
2019
, “
Effect of Reservoir Characteristics on the Productivity and Production Forecasting of the Montney Shale Gas in Canada
,”
J. Pet. Sci. Eng.
,
182
, p.
106276
. 10.1016/j.petrol.2019.106276
6.
Sheng
,
J. J.
,
2015
, “
Increase Liquid Oil Production by Huff-n-Puff of Produced Gas in Shale Gas Condensate Reservoirs
,”
J. Unconv. Oil Gas Resour.
,
11
, pp.
19
26
. 10.1016/j.juogr.2015.04.004
7.
Yang
,
Y.
,
Yang
,
H.
,
Tao
,
L.
,
Yao
,
J.
,
Wang
,
W.
,
Zhang
,
K.
, and
Luquot
,
L.
,
2019
, “
Microscopic Determination of Remaining Oil Distribution in Sandstones With Different Permeability Scales Using Computed Tomography Scanning
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
092903
. 10.1115/1.4043131
8.
Guo
,
B.
,
Gao
,
D.
, and
Wang
,
Q.
,
2011
, “
The Role of Formation Damage in Hydraulic Fracturing Shale Gas Wells
,”
SPE Eastern Regional Meeting
,
OH
,
Aug. 17–19
, pp.
1
13
.
9.
Seales
,
M. B.
,
Ertekin
,
T.
, and
Yilin Wang
,
J.
,
2017
, “
Recovery Efficiency in Hydraulically Fractured Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042901
. 10.1115/1.4036043
10.
Ghahri
,
P.
,
Jamiolahmadi
,
M.
,
Alatefi
,
E.
,
Wilkinson
,
D.
,
Dehkordi
,
F. S.
, and
Hamidi
,
H.
,
2018
, “
A New and Simple Model for the Prediction of Horizontal Well Productivity in Gas Condensate Reservoirs
,”
Fuel
,
223
, pp.
431
450
. 10.1016/j.fuel.2018.02.022
11.
Bennion
,
D. B.
,
Bietz
,
R. F.
,
Thomas
,
F. B.
, and
Cimolai
,
M. P.
,
1994
, “
Reductions in the Productivity of Oil and Low Permeability Gas Reservoirs Due to Aqueous Phase Trapping
,”
J. Can. Pet. Technol.
,
33
(
9
), pp.
45
54
.
12.
Bennion
,
D. B.
,
Thomas
,
F. B.
, and
Bietz
,
R. F.
,
1996
, “
Low Permeability Gas Reservoirs: Problems, Opportunities and Solutions for Drilling, Completion, Stimulation and Production
,”
SPE Gas Technology Symposium
,
Calgary, AB, Canada
,
Apr. 28–May 1
, pp.
1
15
.
13.
Nasriani
,
H. R.
,
Borazjani
,
A. A.
,
Iraji
,
B.
, and
MoradiDowlatAbad
,
M.
,
2015
, “
Investigation Into the Effect of Capillary Number on Productivity of a Lean Gas Condensate Reservoir
,”
J. Pet. Sci. Eng.
,
135
, pp.
384
390
. 10.1016/j.petrol.2015.09.030
14.
Kalla
,
S.
,
Leonardi
,
S. A.
,
Berry
,
D. W.
,
Poore
,
L. D.
,
Sahoo
,
H.
,
Kudva
,
R. A.
, and
Braun
,
E. M.
,
2014
, “
Factors That Affect Gas-Condensate Relative Permeability
,”
The International Petroleum Technology Conference
,
Doha, Qatar
,
Jan. 19–22
.
15.
Hussien
,
O. S.
,
Elraies
,
K. A.
,
Almansour
,
A.
,
Husin
,
H.
,
Belhaj
,
A.
, and
Ern
,
L.
,
2019
, “
Experimental Study on the Use of Surfactant as a Fracking Fluid Additive for Improving Shale Gas Productivity
,”
J. Pet. Sci. Eng.
,
183
, p.
106426
. 10.1016/j.petrol.2019.106426
16.
Whitson
,
C. H.
, and
Sunjerga
,
S.
,
2012
, “
PVT in Liquid-Rich Shale Reservoirs
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Oct. 8–10
, pp.
1
25
.
17.
Liu
,
Q. G.
,
Wang
,
W. H.
,
Liu
,
H.
,
Zhang
,
G.
,
Li
,
L. X.
, and
Zhao
,
Y. L.
,
2018
, “
Production Rate Analysis of Fractured Horizontal Well Considering Multi-Transport Mechanisms in Shale Gas Reservoir
,”
Geofluids
,
2018
, p.
3148298
.
18.
Zhao
,
X.
,
Rui
,
Z.
,
Liao
,
X.
, and
Zhang
,
R.
,
2015
, “
A Simulation Method for Modified Isochronal Well Testing to Determine Shale Gas Well Productivity
,”
J. Nat. Gas Sci. Eng.
,
27
, pp.
479
485
. 10.1016/j.jngse.2015.08.035
19.
Yousefi
,
S. H.
,
Eslamian
,
A.
, and
Rashidi
,
F.
,
2014
, “
Investigation of Well Test Behaviour in Gas Condensate Reservoir Using Single-Phase Pseudo-Pressure Function
,”
Korean J. Chem. Eng.
,
31
(
1
), pp.
20
28
. 10.1007/s11814-013-0194-5
20.
Huang
,
S.
,
Ding
,
G.
,
Wu
,
Y.
,
Huang
,
H.
,
Lan
,
X.
, and
Zhang
,
J.
,
2018
, “
A Semi-Analytical Model to Evaluate Productivity of Shale Gas Wells With Complex Fracture Networks
,”
J. Nat. Gas Sci. Eng.
,
50
, pp.
374
383
. 10.1016/j.jngse.2017.09.010
21.
Rawlins
,
E. L.
, and
Schellhardt
,
M. A.
,
1935
,
Back-Pressure Data on Natural-Gas Wells and Their Application to Production Practices
(Monograph Series), Vol.
7
,
U.S. Bureau of Mines
,
Lord Baltimore Press, Baltimore, MD
.
22.
Hassan
,
A. M.
,
Mahmoud
,
M. A.
,
Al-Majed
,
A. A.
,
Elkatatny
,
S.
,
Al-Nakhli
,
A. R.
, and
Bataweel
,
M. A.
,
2018
, “
Novel Technique to Eliminate Gas Condensation in Gas Condensate Reservoirs Using Thermochemical Fluids
,”
Energy Fuels
,
32
(
12
), pp.
12843
12850
. 10.1021/acs.energyfuels.8b03604
23.
Hassan
,
A. M.
,
Mahmoud
,
M. A.
,
Al-Majed
,
A. A.
,
Al-Nakhli
,
A. R.
, and
Bataweel
,
M. A.
,
2019
, “
Water Blockage Removal and Productivity Index Enhancement by Injecting Thermochemical Fluids in Tight Sandstone Formations
,”
J. Pet. Sci. Eng.
,
182
, p.
106298
. 10.1016/j.petrol.2019.106298
24.
Hassan
,
A. M.
,
Mahmoud
,
M. A.
,
Al-Majed
,
A. A.
,
Al-Nakhli
,
A. R.
,
Bataweel
,
M. A.
, and
Elkatatny
,
S.
,
2019
, “
Mitigation of Condensate Banking Using Thermochemical Treatment: Experimental and Analytical Study
,”
Energies
,
12
(
5
), p.
800
. 10.3390/en12050800
25.
Hassan
,
A.
,
Abdalla
,
M.
,
Mahmoud
,
M.
,
Glatz
,
G.
,
Al-Majed
,
A.
, and
Al-Nakhli
,
A.
,
2020
, “
Condensate-Banking Removal and Gas-Production Enhancement Using Thermochemical Injection: A Field-Scale Simulation
,”
Processes
,
8
(
6
), p.
727
. 10.3390/pr8060727
26.
Mahmoud
,
M.
,
2019
, “
Well Clean-Up Using a Combined Thermochemical/Chelating Agent Fluids
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102905
. 10.1115/1.4043612
27.
Tariq
,
Z.
,
Mahmoud
,
M.
,
Alade
,
O.
,
Abdulraheem
,
A.
,
Mustafa
,
A.
,
Mokheimer
,
E.
,
Al-Jawad
,
M.
, and
Al-Nakhli
,
A.
,
2020
, “
Productivity Enhancement in Multilayered Unconventional Rocks Using Thermochemicals
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
033001
. 10.1115/1.4047976
28.
Al-Nakhli
,
A. R.
,
Sukkar
,
L. A.
,
Arukhe
,
J.
,
Mulhem
,
A.
,
Mohannad
,
A.
,
Ayub
,
M.
, and
Arifin
,
M.
,
2016
, “
In-Situ Steam Generation a New Technology Application for Heavy Oil Production
,”
SPE Heavy Oil Conference and Exhibition
,
Kuwait City, Kuwait
,
Dec. 6–8
, pp.
1
19
.
29.
Ayub
,
M.
, and
Ramadan
,
M.
,
2019
, “
Mitigation of Near Wellbore Gas-Condensate by CO2 Huff-n-Puff Injection: A Simulation Study
,”
J. Pet. Sci. Eng.
,
175
, pp.
998
1027
. 10.1016/j.petrol.2018.12.066
30.
Sharma
,
S.
, and
Sheng
,
J. J.
,
2018
, “
Comparison of Huff-n-Puff Gas Injection and Solvent Injection in Large-Scale Shale Gas Condensate Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
52
, pp.
434
453
. 10.1016/j.jngse.2017.10.007
31.
Sheng
,
J. J.
,
2017
, “
Optimization of Huff-n-Puff Gas Injection in Shale Oil Reservoirs
,”
Petroleum
,
3
(
4
), pp.
431
437
. 10.1016/j.petlm.2017.03.004
32.
Meng
,
X.
, and
Sheng
,
J. J.
,
2016
, “
Optimization of Huff-n-Puff Gas Injection in a Shale Gas Condensate Reservoir
,”
J. Unconv. Oil Gas Resour.
,
16
, pp.
34
44
. 10.1016/j.juogr.2016.09.003
33.
Sheng
,
J. J.
,
Mody
,
F.
,
Griffith
,
P. J.
, and
Barnes
,
W. N.
,
2016
, “
Potential to Increase Condensate Oil Production by Huff-n-Puff Gas Injection in a Shale Condensate Reservoir
,”
J. Nat. Gas Sci. Eng.
,
28
, pp.
46
51
. 10.1016/j.jngse.2015.11.031
34.
Meng
,
X.
,
Sheng
,
J. J.
, and
Yu
,
Y.
,
2017
, “
Experimental and Numerical Study of Enhanced Condensate Recovery by Gas Injection in Shale Gas-Condensate Reservoirs
,”
SPE Res. Eval. Eng.
,
20
(
2
), pp.
471
477
. 10.2118/183645-PA
35.
Wan
,
T.
, and
Mu
,
Z.
,
2018
, “
The Use of Numerical Simulation to Investigate the Enhanced Eagle Ford Shale Gas Condensate Well Recovery Using Cyclic CO2 Injection Method With Nano-Pore Effect
,”
Fuel
,
233
, pp.
123
132
. 10.1016/j.fuel.2018.06.037
36.
Sharma
,
S.
, and
Sheng
,
J. J.
,
2017
, “
A Comparative Study of Huff-n-Puff Gas and Solvent Injection in a Shale Gas Condensate Core
,”
J. Nat. Gas Sci. Eng.
,
38
, pp.
549
565
. 10.1016/j.jngse.2017.01.012
37.
Hassan
,
A.
,
Mahmoud
,
M.
,
Al-Majed
,
A.
,
Alawi
,
M. B.
,
Elkatatny
,
S.
,
BaTaweel
,
M.
, and
Al-Nakhli
,
A.
,
2019
, “
Gas Condensate Treatment: A Critical Review of Materials, Methods, Field Applications, and New Solutions
,”
J. Pet. Sci. Eng.
,
177
, pp.
602
613
. 10.1016/j.petrol.2019.02.089
38.
Al-Nakhli
,
A. R.
,
Abass
,
H.
,
Kwak
,
H. T.
,
Al-Badairy
,
H.
,
Al-Ajwad
,
H. A.
,
Al-Harith
,
A.
, and
Al-Otaibi
,
A.
,
2013
, “
Overcoming Unconventional Gas Challenges by Creating Synthetic Sweetspot and Increasing Drainage Area
,”
SPE Middle East Oil and Gas Show and Conference
,
Manama, Bahrain
,
Mar. 10–13
, pp.
1
15
.
39.
Alade
,
O. S.
,
Mahmoud
,
M.
,
Hassan
,
A.
,
Al-Shehri
,
D.
,
Al-Nakhli
,
A.
, and
Bataweel
,
M.
,
2019
, “
Evaluation of Kinetics and Energetics of Thermochemical Fluids for Enhanced Recovery of Heavy Oil and Liquid Condensate
,”
Energy Fuels
,
33
(
6
), pp.
5538
5543
. 10.1021/acs.energyfuels.9b00681
40.
Hassan
,
A.
,
Mahmoud
,
M.
,
Al-Majed
,
A.
,
Elsayed
,
M.
,
Al-Nakhli
,
A.
, and
BaTaweel
,
M.
,
2020
, “
Performance Analysis of Thermochemical Fluids in Removing the Gas Condensate From Different Gas Formations
,”
J. Nat. Gas Sci. Eng.
,
78
, p.
103333
. 10.1016/j.jngse.2020.103333
41.
Xu
,
H.
,
Fan
,
Y.
,
Hu
,
F.
,
Li
,
C.
,
Yu
,
J.
,
Liu
,
Z.
, and
Wang
,
F.
,
2019
, “
Characterization of Pore Throat Size Distribution in Tight Sandstones With Nuclear Magnetic Resonance and High-Pressure Mercury Intrusion
,”
Energies
,
12
(
8
), p.
1528
. 10.3390/en12081528
42.
Brooks
,
R. H.
, and
Corey
,
A. T.
,
1964
,
Hydraulic Properties of Porous Media
(Hydrology Papers, No. 3),
Colorado State University
,
Ft. Collins, CO
, pp.
22
27
.
You do not currently have access to this content.