Abstract

Iron (Fe) concentration is a crucial parameter for boiler safety. However, as the working fluid circulation circuits cross each other, and the working fluid operational parameters change over a wide range, monitoring the Fe content and evaluating pipeline safety are very difficult. The mass transfer process of Fe in a complex water circulation system was described by constructing a network calculation model of Fe mass transfer in the steam-water circulation system of a supercritical boiler. The distribution of Fe and the corrosion/deposition rate in the system was calculated and analyzed. The influence of a Fe mass disturbance in single or multiple equipment on the mass distribution of Fe in the system is discussed. The results show that model calculation data is close to the operational data. Under the effect of cyclic mass transfer, both the granular and dissolved Fe cannot be ignored. During one cycle, about 36% of Fe was deposited on the system tube; however, the deposition amount in the steam generator and superheater section accounted for 81.2% of the total deposition amount, and the rest was deposited in the low-temperature pipeline. The influence of disturbance on other nodes in the network is quite different, which provides the possibility of discriminating the location of the disturbance node. The research results can provide a theoretical reference for water chemical control and safety during the operation.

References

1.
Tomarov
,
G. V.
,
Shipkov
,
A. A.
, and
Komissarova
,
T. N.
,
2018
, “
Flow-Accelerated Corrosion Wear of Power-Generating Equipment: Investigations, Prediction, and Prevention: 2. Prediction and Prevention of General and Local Flow-Accelerated Corrosion
,”
Therm. Eng.
,
65
(
8
), pp.
504
514
. 10.1134/S0040601518080074
2.
Inada
,
F.
,
Yoneda
,
K.
,
Morita
,
R.
,
Fujiwara
,
K.
, and
Furuya
,
M.
,
2008
, “
A Consideration on Pipe-Wall Thinning Mechanisms From an Aspect of Fluid-Mechanics
,”
Zairyo-to-Kankyo
,
57
(
5
), pp.
218
223
. 10.3323/jcorr.57.218
3.
Yuan
,
X. X.
,
Pandey
,
M. D.
, and
Bickel
,
G. A.
,
2008
, “
A Probabilistic Model of Wall Thinning in CANDU Feeders Due to Flow-Accelerated Corrosion
,”
Nucl. Eng. Des.
,
238
(
1
), pp.
16
24
. 10.1016/j.nucengdes.2007.06.004
4.
Tomarov
,
G. V.
, and
Shipkov
,
A. A.
,
2018
, “
Flow-Accelerated Corrosion Wear of Power-Generating Equipment: Investigations, Prediction, and Prevention: 1. Flow-Accelerated Corrosion Processes and Regularities
,”
Therm. Eng.
,
65
(
8
), pp.
493
503
. 10.1134/S0040601518080062
5.
Zhang
,
H.
, and
Lan
,
H. Q.
,
2017
, “
A Review of Internal Corrosion Mechanism and Experimental Study for Pipelines Based on Multiphase Flow
,”
Corros. Rev.
,
35
(
6
), pp.
425
444
. 10.1515/corrrev-2017-0064
6.
Sheikh
,
A. K.
,
Zubair
,
S. M.
,
Haq
,
M. U.
, and
Budair
,
M. O.
,
1996
, “
Reliability-Based Maintenance Strategies for Heat Exchangers Subject to Fouling
,”
ASME J. Energy Resour. Technol.
,
118
(
4
), pp.
306
312
. 10.1115/1.2793878
7.
Madejski
,
P.
,
Janda
,
T.
,
Taler
,
J.
,
Nabaglo
,
D.
,
Wezik
,
R.
, and
Mazur
,
M.
,
2018
, “
Analysis of Fouling Degree of Individual Heating Surfaces in a Pulverized Coal Fired Boiler
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032003
. 10.1115/1.4037936
8.
Pietralik
,
J. M.
, and
Schefski
,
C. S.
,
2011
, “
Flow and Mass Transfer in Bends Under Flow-Accelerated Corrosion Wall Thinning Conditions
,”
ASME J. Eng. Gas Turbines Power
,
133
(
1
), p.
012902
. 10.1115/1.4001061
9.
Zhang
,
N.
,
Zhu
,
Z.
,
Yue
,
G.
,
Jiang
,
D.
, and
Xu
,
H.
,
2017
, “
The Oxidation Behaviour of an Austenitic Steel in Deaerated Supercritical Water at 600–700 °C
,”
Mater. Charact.
,
132
, pp.
119
125
. 10.1016/j.matchar.2017.07.023
10.
Zhong
,
X.
,
Hamdani
,
F.
,
Xu
,
J.
,
Shoji
,
T.
,
Tatsuki
,
T.
,
Morii
,
J.
,
Sasaki
,
W.
, and
Ishii
,
Y.
,
2019
, “
Characterization of the Oxide Scale Formed on T12 Water Wall Tube After Long-Term Service in Supercritical Power Plant
,”
Oxid. Met.
,
91
(
5–6
), pp.
705
727
. 10.1007/s11085-019-09905-1
11.
Cai
,
L.
,
Wang
,
S.
,
Cheng
,
S.
,
Xiao
,
J.
,
Gao
,
S.
, and
Li
,
Y.
,
2017
, “
Optimization Design of Separators for Removing Solid Particles From Main Steam Pipeline of High-Parameter Steam Turbine
,”
Appl. Therm. Eng.
,
111
, pp.
516
525
. 10.1016/j.applthermaleng.2016.09.146
12.
Cao
,
L.
,
Tu
,
C.
,
Hu
,
P.
, and
Liu
,
S.
,
2019
, “
Influence of Solid Particle Erosion (SPE) on Safety and Economy of Steam Turbines
,”
Appl. Therm. Eng.
,
150
, pp.
552
563
. 10.1016/j.applthermaleng.2018.12.172
13.
Sabau
,
A. S.
,
Wright
,
I. G.
, and
Shingledecker
,
J. P.
,
2012
, “
Oxide Scale Exfoliation and Regrowth in TP347H Superheater Tubes
,”
Mater. Corros.
,
63
(
10
), pp.
896
908
. 10.1002/maco.201206640
14.
Turner
,
C.W.
, and
Khumsa-Ang
,
K.
,
2017
, “Influence of Solid Particle Erosion (SPE) on Safety and Economy of Steam Turbines,”
Steam Generators for Nuclear Power Plants
,
J.
Riznic
, ed.,
Woodhead Publishing
,
Cambridge
, pp.
215
271
.
15.
Fujiwara
,
K.
,
Domae
,
M.
,
Yoneda
,
K.
,
Inada
,
F.
,
Ohira
,
T.
, and
Hisamune
,
K.
,
2011
, “
Correlation of Flow Accelerated Corrosion Rate with Iron Solubility
,”
Nucl. Eng. Des.
,
241
(
11
), pp.
4482
4486
. 10.1016/j.nucengdes.2011.04.035
16.
Cook
,
W. G.
, and
Olive
,
R. P.
,
2012
, “
Pourbaix Diagrams for the Iron-Water System Extended to High-Subcritical and Low-Supercritical Conditions
,”
Corros. Sci.
,
55
, pp.
326
331
. 10.1016/j.corsci.2011.10.034
17.
Uchida
,
S.
,
Naitoh
,
M.
,
Okada
,
H.
,
Uehara
,
Y.
, and
Koshizuka
,
S.
,
2011
, “
Evaluation of Flow Accelerated Corrosion by Coupled Analysis of Corrosion and Flow Dynamics. Relationship of Oxide Film Thickness, Hematite/Magnetite Ratio, ECP and Wall Thinning Rate
,”
Nucl. Eng. Des.
,
241
(
11
), pp.
4585
4593
. 10.1016/j.nucengdes.2010.09.018
18.
Ma
,
D.
,
Zhou
,
T.
,
Li
,
B.
,
Feng
,
X.
, and
Zhang
,
H.
,
2019
, “
Study on the Movement and Deposition of Particles in Supercritical Water
,”
Int. J. Heat Mass Transfer
,
136
, pp.
55
69
. 10.1016/j.ijheatmasstransfer.2019.01.117
19.
Ahmed
,
W. H.
,
2010
, “
Evaluation of the Proximity Effect on Flow-Accelerated Corrosion
,”
Ann. Nucl. Energy
,
37
(
4
), pp.
598
605
. 10.1016/j.anucene.2009.12.020
20.
Baek
,
S. H.
,
Shim
,
H. S.
,
Kim
,
J. G.
, and
Hur
,
D. H.
,
2018
, “
Effect of Chemical Etching of Fuel Cladding Surface on Crud Deposition Behavior in Simulated Primary Water of PWRs at 328 °C
,”
Ann. Nucl. Energy
,
116
, pp.
69
77
. 10.1016/j.anucene.2018.02.030
21.
Raman
,
B.
,
Hall
,
D. M.
,
Shulder
,
S. J.
,
Caravaggio
,
M.
, and
Lvov
,
S. N.
,
2015
, “
Deposition of Suspended Magnetite in High Temperature High Pressure Boiler Environments
,”
ECS Trans.
,
66
(
21
), pp.
43
56
. 10.1149/06621.0043ecst
22.
Chen
,
G.
,
Bedi
,
R. S.
,
Yan
,
Y. S.
, and
Walker
,
S. L.
,
2010
, “
Initial Colloid Deposition on Bare and Zeolite-Coated Stainless Steel and Aluminum: Influence of Surface Roughness
,”
Langmuir
,
26
(
15
), pp.
12605
12613
. 10.1021/la101667t
23.
Pizzolato
,
A.
,
Sciacovelli
,
A.
, and
Verda
,
V.
,
2018
, “
Topology Optimization of Robust District Heating Networks
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020905
. 10.1115/1.4038312
24.
Harush
,
U.
, and
Barzel
,
B.
,
2017
, “
Dynamic Patterns of Information Flow in Complex Networks
,”
Nat. Commun.
,
8
(
1
), p.
2181
. 10.1038/s41467-017-01916-3
25.
Karakama
,
K.
,
2009
, “
Methods for the Characterization of Deposition and Transport of Magnetite Particles in Supercritical Water
,”
Ph.D. thesis
,
University of British Columbia
. 10.1016/j.supflu.2012.06.015
26.
Barzel
,
B.
, and
Barabási
,
A. L.
,
2013
, “
Universality in Network Dynamics
,”
Nat. Phys.
,
9
(
10
), pp.
673
681
. 10.1038/nphys2741
You do not currently have access to this content.