Abstract

Energy consumption of a household refrigerator majorly depends on the ambient temperature and is highest at the noontime and lowest at the night. To mitigate the impact of higher ambient temperature, condenser of the refrigerator is modified by incorporating phase change material (PCM) in it. This article presents the development of numerical model of the PCM-based condenser and its comparison with the experimental model. A 3D numerical model for a PCM, namely, FS21-based condenser has been developed in commercial software ansys fluent 16.2, and the simulation outcomes are compared with the experimental test results. A correlation of a coefficient of performance (COP) which is a function of PCM temperature has been proposed. Based on the developed numerical model and the correlation, two other PCM-based heat exchangers, RT25 and RT25HC, are also analyzed numerically and their PCM temperatures are predicted. At the end, COP of the refrigerator with each PCM is compared.

References

1.
Wolfram
,
C.
,
Shelef
,
O.
, and
Gertler
,
P.
,
2012
, “
How Will Energy Demand Develop in the Developing World?
,”
J. Econ. Perspect.
,
26
(
1
), pp.
119
138
. 10.1257/jep.26.1.119
2.
Negrão
,
C. O. R.
, and
Hermes
,
C. J. L.
,
2011
, “
Energy and Cost Savings in Household Refrigerating Appliances: A Simulation-Based Design Approach
,”
Appl. Energy.
,
88
(
9
), pp.
3051
3060
. 10.1016/j.apenergy.2011.03.013
3.
World Bank
,
2008
, “
Residential Consumption of Electricity In India.
4.
Vendrusculo
,
E. A.
,
de C. Queiroz
,
G.
,
Jannuzzi
,
G. D. M.
,
da S. Júnior
,
H. X.
, and
Pomilio
,
J. A.
,
2009
, “
Life Cycle Cost Analysis of Energy Efficiency Design Options for Refrigerators in Brazil
,”
Energy Effic.
,
2
(
3
), pp.
271
286
. 10.1007/s12053-008-9034-6
5.
Boegle
,
A.
,
Singh
,
D.
, and
Sant
,
G.
,
2010
, “
Estimating Technical Energy Saving Potential From Improved Appliance Efficiency in Indian Households Method for Estimating Saving Potential
,”
ACEEE Summer Study Energy Efficiency in Buildings
,
Asilomar Conference Grounds, Pacific Grove, CA
,
Aug. 15–20
.
6.
Zhang
,
C.
, and
Lian
,
Y.
,
2014
, “
Conjugate Heat Transfer Analysis Using a Simplified Household Refrigerator Model
,”
Int. J. Refrig.
,
45
, pp.
210
222
. 10.1016/j.ijrefrig.2014.05.017
7.
Hermes
,
C. J. L.
,
Melo
,
C.
,
Knabben
,
F. T.
, and
Gonçalves
,
J. M.
,
2009
, “
Prediction of the Energy Consumption of Household Refrigerators and Freezers via Steady-State Simulation
,”
Appl. Energy
,
86
(
7–8
), pp.
1311
1319
. 10.1016/j.apenergy.2008.10.008
8.
Nethaji
,
N.
, and
Mohideen
,
S. T.
,
2017
, “
Energy Conservation in Domestic Refrigerators by Cooling Compressor Shell—A Case Study
,”
Case Stud. Therm. Eng.
,
10
, pp.
382
387
. 10.1016/j.csite.2017.08.002
9.
Waltrich
,
P. J.
,
Barbosa
,
J. R.
, and
Hermes
,
C. J. L.
,
2011
, “
COP-Based Optimization of Accelerated Flow Evaporators for Household Refrigeration Applications
,”
Appl. Therm. Eng.
,
31
(
1
), pp.
129
135
. 10.1016/j.applthermaleng.2010.07.029
10.
Celik
,
S.
, and
Nsofor
,
E. C.
,
2014
, “
Performance Analysis of a Refrigerating System With a Grooved-Tube Evaporator
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
743
748
. 10.1016/j.applthermaleng.2014.08.033
11.
Mokheimer
,
E. M. A.
, and
Sanusi
,
Y. S.
,
2015
, “
Comparative Analysis of Different Configuration Domestic Refrigerators: A Computational Fluid Dynamics Approach
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062002
. 10.1115/1.4030848
12.
Barbosa
,
J. R.
, and
Sigwalt
,
R. A.
,
2012
, “
Air-Side Heat Transfer and Pressure Drop in Spiral Wire-on-Tube Condensers
,”
Int. J. Refrig.
,
35
(
4
), pp.
939
951
. 10.1016/j.ijrefrig.2012.02.010
13.
Ghadiri
,
F.
, and
Rasti
,
M.
,
2014
, “
The Effect of Selecting Proper Refrigeration Cycle Components on Optimizing Energy Consumption of the Household Refrigerators
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
335
340
. 10.1016/j.applthermaleng.2014.03.024
14.
Rasti
,
M.
,
Hatamipour
,
M. S.
,
Aghamiri
,
S. F.
, and
Tavakoli
,
M.
,
2012
, “
Enhancement of Domestic Refrigerator’s Energy Efficiency Index Using a Hydrocarbon Mixture Refrigerant
,”
Measurement.
,
45
(
7
), pp.
1807
1813
. 10.1016/j.measurement.2012.04.002
15.
Modi
,
N.
,
Pandya
,
B.
,
Patel
,
J.
, and
Mudgal
,
A.
,
2019
, “
Advanced Exergetic Assessment of a Vapor Compression Cycle With Alternative Refrigerants
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
092002
. 10.1115/1.4043249
16.
Hammond
,
E. C.
, and
Evans
,
J. A.
,
2014
, “
Application of Vacuum Insulation Panels in the Cold Chain—Analysis of Viability
,”
Int. J. Refrig.
,
47
, pp.
58
65
. 10.1016/j.ijrefrig.2014.07.010
17.
Liu
,
D. Y.
,
Chang
,
W. R.
, and
Lin
,
J. Y.
,
2004
, “
Performance Comparison With Effect of Door Opening on Variable and Fixed Frequency Refrigerators/Freezers
,”
Appl. Therm. Eng.
,
24
(
14–15
), pp.
2281
2292
. 10.1016/j.applthermaleng.2004.01.009
18.
Dandotiya
,
D.
,
Viswanath
,
R. A.
, and
Banker
,
N. D.
,
2015
, “
Energy Saving Using Multi-Door in Refrigerator
,”
International Conference on Polygeneration
,
Feb., 18–20
,
Anna University, Chennai
,, pp.
1
6
, http://www.polygeneration.net/polygeneration2015/, Accessed 28 June 2020.
19.
Geppert
,
J.
, and
Stamminger
,
R.
,
2013
, “
Analysis of Effecting Factors on Domestic Refrigerators’ Energy Consumption in Use
,”
Energy Convers. Manag.
,
76
, pp.
794
800
. 10.1016/j.enconman.2013.08.027
20.
Mohanraj
,
M.
,
Jayaraj
,
S.
,
Muraleedharan
,
C.
, and
Chandrasekar
,
P.
,
2009
, “
Experimental Investigation of R290/R600a Mixture as an Alternative to R134a in a Domestic Refrigerator
,”
Int. J. Therm. Sci.
,
48
(
5
), pp.
1036
1042
. 10.1016/j.ijthermalsci.2008.08.001
21.
Harrington
,
L.
,
Aye
,
L.
, and
Fuller
,
R. J.
,
2018
, “
Opening the Door on Refrigerator Energy Consumption: Quantifying the Key Drivers in the Home
,”
Energy Effic.
,
11
(
6
), pp.
1519
1539
. 10.1007/s12053-018-9642-8
22.
Björk
,
E.
, and
Palm
,
B.
,
2006
, “
Performance of a Domestic Refrigerator Under Influence of Varied Expansion Device Capacity, Refrigerant Charge and Ambient Temperature
,”
Int. J. Refrig.
,
29
(
5
), pp.
789
798
. 10.1016/j.ijrefrig.2005.11.008
23.
Sarhadian
,
R. P. E.
,
2004
, “
Small Grocery Store Integrated Energy Efficiency Improvements, Refrigeration and Thermal Test Centre Project PY 2002
,” Refrigeration and Thermal Test Center, Southern California Edison, RTTC Project#: R02ET01, ET Project#: ET02. 05.
24.
Hasanuzzaman
,
M.
,
Saidur
,
R.
, and
Masjuki
,
H. H.
,
2009
, “
Effects of Operating Variables on Heat Transfer and Energy Consumption of a Household Refrigerator-Freezer During Closed Door Operation
,”
Energy.
,
34
(
2
), pp.
196
198
. 10.1016/j.energy.2008.11.003
25.
Cheralathan
,
M.
,
Velraj
,
R.
, and
Renganarayanan
,
S.
,
2007
, “
Performance Analysis on Industrial Refrigeration System Integrated With Encapsulated PCM-Based Cool Thermal Energy Storage System
,”
Int. J. Energy Res.
,
31
(
14
), pp.
1398
1413
. 10.1002/er.1313
26.
Khan
,
M. I. H.
,
2016
, “
Conventional Refrigeration Systems Using Phase Change Material: A Review
,”
Int. J. Air-Conditioning Refrig.
,
24
(
3
), p.
1630007
. 10.1142/S201013251630007X
27.
Mastani Joybari
,
M.
,
Moffat
,
J.
, and
Sra
,
P.
,
2015
, “
Heat and Cold Storage Using Phase Change Materials in Domestic Refrigeration Systems: The State-of-the-Art Review
,”
Energy Build.
,
106
, pp.
111
124
. 10.1016/j.enbuild.2015.06.016
28.
Hassan
,
M. A. M.
,
Abdel-Hameed
,
H. M.
, and
Mahmoud
,
O. E.
,
2019
, “
Experimental Investigation of the Effect of Nanofluid on Thermal Energy Storage System Using Clathrate
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042003
. 10.1115/1.4042004
29.
AlZahrani
,
A. A.
, and
Dincer
,
I.
,
2016
, “
Performance Assessment of an Aquifer Thermal Energy Storage System for Heating and Cooling Applications
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
011901
. 10.1115/1.4031581
30.
Mollenhauer
,
E.
,
Christidis
,
A.
, and
Tsatsaronis
,
G.
,
2018
, “
Increasing the Flexibility of Combined Heat and Power Plants With Heat Pumps and Thermal Energy Storage
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020907
. 10.1115/1.4038461
31.
Wang
,
F.
,
Maidment
,
G.
,
Missenden
,
J.
, and
Tozer
,
R.
,
2007
, “
The Novel Use of Phase Change Materials in Refrigeration Plant. Part 1: Experimental Investigation
,”
Appl. Therm. Eng.
,
27
(
17–18
), pp.
2893
2901
. 10.1016/j.applthermaleng.2005.06.011
32.
Wang
,
F.
,
Maidment
,
G.
,
Missenden
,
J.
, and
Tozer
,
R.
,
2007
, “
The Novel Use of Phase Change Materials in Refrigeration Plant. Part 2: Dynamic Simulation Model for the Combined System
,”
Appl. Therm. Eng.
,
27
(
17–18
), pp.
2902
2910
. 10.1016/j.applthermaleng.2005.06.009
33.
Wang
,
F.
,
Maidment
,
G.
,
Missenden
,
J.
, and
Tozer
,
R.
,
2007
, “
The Novel Use of Phase Change Materials in Refrigeration Plant. Part 3: PCM for Control and Energy Savings
,”
Appl. Therm. Eng.
,
27
(
17–18
), pp.
2911
2918
. 10.1016/j.applthermaleng.2005.06.010
34.
Azzouz
,
K.
,
Leducq
,
D.
, and
Gobin
,
D.
,
2009
, “
Enhancing the Performance of Household Refrigerators With Latent Heat Storage: An Experimental Investigation
,”
Int. J. Refrig.
,
32
(
7
), pp.
1634
1644
. 10.1016/j.ijrefrig.2009.03.012
35.
Azzouz
,
K.
,
Leducq
,
D.
, and
Gobin
,
D.
,
2008
, “
Performance Enhancement of a Household Refrigerator by Addition of Latent Heat Storage
,”
Int. J. Refrig.
,
31
(
5
), pp.
892
901
. 10.1016/j.ijrefrig.2007.09.007
36.
Gin
,
B.
,
Farid
,
M. M.
, and
Bansal
,
P. K.
,
2010
, “
Effect of Door Opening and Defrost Cycle on a Freezer With Phase Change Panels
,”
Energy Convers. Manag.
,
51
(
12
), pp.
2698
2706
. 10.1016/j.enconman.2010.06.005
37.
Gin
,
B.
,
Farid
,
M.
, and
Bansal
,
P.
,
2011
, “
Modeling of Phase Change Material Implemented Into Cold Storage Application
,”
HVAC&R Res.
,
17
(
3
), pp.
257
267
. 10.1080/10789669.2011.572222
38.
Marques
,
A. C.
,
Davies
,
G. F.
,
Maidment
,
G. G.
,
Evans
,
J. A.
, and
Wood
,
I. D.
,
2014
, “
Novel Design and Performance Enhancement of Domestic Refrigerators With Thermal Storage
,”
Appl. Therm. Eng.
,
63
(
2
), pp.
511
519
. 10.1016/j.applthermaleng.2013.11.043
39.
Cheng
,
W. L.
,
Mei
,
B. J.
,
Liu
,
Y. N.
,
Huang
,
Y. H.
, and
Yuan
,
X. D.
,
2011
, “
A Novel Household Refrigerator With Shape-Stabilized PCM (Phase Change Material) Heat Storage Condensers: An Experimental Investigation
,”
Energy.
,
36
(
10
), pp.
5797
5804
. 10.1016/j.energy.2011.08.050
40.
Sonnenrein
,
G.
,
Elsner
,
A.
,
Baumhögger
,
E.
,
Morbach
,
A.
,
Fieback
,
K.
, and
Vrabec
,
J.
,
2015
, “
Reducing the Power Consumption of Household Refrigerators Through the Integration of Latent Heat Storage Elements in Wire-and-Tube Condensers
,”
Int. J. Refrig.
,
51
, pp.
154
160
. 10.1016/j.ijrefrig.2014.12.011
41.
Sonnenrein
,
G.
,
Baumhögger
,
E.
,
Elsner
,
A.
,
Fieback
,
K.
,
Morbach
,
A.
,
Paul
,
A.
, and
Vrabec
,
J.
,
2015
, “
Copolymer-Bound Phase Change Materials for Household Refrigerating Appliances: Experimental Investigation of Power Consumption, Temperature Distribution and Demand Side Management Potential
,”
Int. J. Refrig.
,
60
, pp.
166
173
. 10.1016/j.ijrefrig.2015.06.030
42.
Dandotiya
,
D.
, and
Banker
,
N. D.
,
2017
, “
Performance Enhancement of a Refrigerator Using Phase Change Material-Based Condenser: An Experimental Investigation
,”
Int. J. Air-Conditioning Refrig.
,
25
(
4
), p.
1750032
. 10.1142/S2010132517500328
43.
Dandotiya
,
D.
,
2018
, “
Experimental and Numerical Investigation of a Household Refrigerator Integrated With a PCM Based Condenser
,”
Ph.D. dissertation
, Shiv Nadar University, UP, India.
44.
Bureau of Indian Standards
,
2000
, “
Indian Standard Performance of Household Refrigerating Appliance—Refrigerators With or Without Low Temperature Compartment Part 1 Energy Consumption and Performance
.”
45.
Data Sheet FS21
, http://www.pluss.co.in/downloads/TDS/Doc353%20TDS%20FS%2021.pdf, Accessed March 2, 2018.
46.
Data Sheet RT25
, Rubitherm website.
48.
ANSYS
,
2015
, “
ANSYS Fluent Theory Guide
,” Release 16.2, ANSYS Inc.
49.
Brent
,
A. D.
,
Voller
,
V. R.
, and
Reid
,
K. J.
,
1988
, “
Enthalpy-Porosity Technique for Modeling Convection-Diffusion Phase Change: Application To the Melting of a Pure Metal
,”
Numer. Heat Transf. An Int. J. Comput. Methodol.
,
13
, pp.
297
318
. 10.1080/10407788808913615
50.
Ye
,
W.-B.
,
Zhu
,
D.-S.
, and
Wang
,
N.
,
2011
, “
Numerical Simulation on Phase-Change Thermal Storage/Release in a Plate-Fin Unit
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
3871
3884
. 10.1016/j.applthermaleng.2011.07.035
51.
Kheirabadi
,
A. C.
, and
Groulx
,
D.
,
2015
, “
The Effect of the Mushy-Zone Constant on Simulated Phase Change Heat Transfer
,”
Proc. CHT-15 6th International Symposium on Advances in Computational Heat Transfer
,
May 25–29
,
New Brunswick, NJ
, pp.
1
22
, https://doi.org/10.1615/ICHMT.2015.IntSympAdvComputHeatTransf.460, Accessed 28 June 2020.
52.
United Nations Economic Commission for Europe
,
2016
, “U
NECE, Agreement on the International Carriage of Perishable Foodstuffs and on the Special Equipment To Be Used for Such Carriage (ATP)
,” https://www.unece.org/trans/main/wp11/atp.html, Accessed 28 June 2020.
You do not currently have access to this content.