Abstract

The reheat and regenerative Braysson cycle being an alternative for combined cycle power plants needs to be optimized for its efficient utilization of energy resources. Therefore, to obtain the best possible overall pressure ratio, regenerator effectiveness, and pressure ratio across multistage compression in order to simultaneously maximize exergy efficiency, nondimensional power density (NDPD), and ecological coefficient of performance (ECOP) for three different maximum temperature situations, multi-objective optimization of the above cycle is carried out using nondominated sorting genetic algorithm-II (NSGA-II). The optimal solutions given by the Pareto frontier are further assessed through widely used decision makers namely LINMAP, TOPSIS, and Bellman–Zadeh techniques. The optimal solutions attained by the decision-making process are further evaluated for their deviation from the nonideal and ideal solutions. The optimal solution obtained through TOPSIS possesses the minimum deviation index. Finally, the results are authenticated by performing an error analysis. Such optimal scenarios achieved for the three maximum temperatures are further analysed to achieve the final objective of the most optimal solution which happens to be at 1200 K. The simultaneous optimization of performance parameters which reflect the thermo-ecological criteria to be satisfied by a power plant has resulted in values of 0.479, 0.327, and 0.922 for exergy efficiency, nondimensional power density, and ecological coefficient of performance, respectively. These optimized performance parameters are obtained for an overall pressure ratio of 7.5, regenerator effectiveness of 0.947, and pressure ratio across multistage compression of 1.311.

References

1.
Frost
,
T. H.
,
Anderson
,
A.
, and
Agnew
,
B. A.
,
1997
, “
Hybrid Gas Turbine Cycle (Brayton/Ericsson): An Alternative to Conventional Combined Gas and Steam Turbine Power Plant
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
211
(
2
), pp.
121
131
.
2.
Sreenivas
,
B.
,
Chandramouli
,
R.
,
Sudhakar
,
I.
, and
Thulasiram
,
A. R.
,
2009
, “
Second Law Analysis of an Irreversible Braysson Cycle
,”
Int. J. Exergy
,
6
(
6
), pp.
826
836
.
3.
Georgiou
,
D. P.
, and
Triantafyllos
,
X.
,
2011
, “
The Process of Isothermal Compression of Gasses at Sub-Atmospheric Pressures Through Regulated Water Injection in Braysson Cycles
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2205
2212
.
4.
Zheng
,
S.
,
Chen
,
J.
, and
Lin
,
G.
,
2005
, “
Performance of an Irreversible Solar Driven Braysson Heat Engine at Maximum Efficiency
,”
Renew. Energy
,
30
(
4
), pp.
601
610
.
5.
Wu
,
L.
, and
Lin
,
G.
,
2009
, “
Investigation on the Optimal Performance and Design Parameters of an Irreversible Solar-Driven Braysson Heat Engine
,”
Int. J. Sust. Energy
,
28
(
4
), pp.
157
170
.
6.
Sadatsakkak
,
S. A.
,
Ahmadi
,
M. H.
,
Bayat
,
R.
, and
Pourkiaei
,
S. M.
,
2015
, “
Optimization Density Power and Thermal Efficiency of an Endoreversible Braysson Cycle by Using Non-Dominated Sorting Genetic Algorithm
,”
Energy Convers. Manage.
,
93
, pp.
31
39
.
7.
Chandramouli
,
R.
,
Srinivasa Rao
,
M. S. S.
, and
Ramji
,
K.
,
2015
, “
Energy and Exergy Based Thermodynamic Analysis of Reheat and Regenerative Braysson Cycle
,”
Energy
,
90
, pp.
1848
1858
.
8.
Chandramouli
,
R.
,
Srinivasa Rao
,
M. S. S.
, and
Ramji
,
K.
,
2015
, “
Parametric and Optimization Studies of Reheat and Regenerative Braysson Cycle
,”
Energy
,
90
, pp.
1848
1858
.
9.
Angulo-Brown
,
F.
,
1991
, “
An Ecological Optimization Criterion for Finite-Time Heat Engines
,”
J. Appl. Phys.
,
69
(
11
), pp.
7465
7469
.
10.
Ust
,
Y.
,
Sahin
,
B.
, and
Sogut
,
O. S.
,
2005
, “
Performance Analysis Optimization of an Irreversible Dual-Cycle Based on an Ecological Coefficient of Performance Criterion
,”
Appl. Energy
,
82
(
1
), pp.
23
39
.
11.
Ahmadi
,
M. H.
,
Ahmadi
,
M. A.
,
Mehrpooya
,
M.
, and
Sameti
,
M.
,
2015
, “
Thermo- Ecological Analysis and Optimization Performance of an Irreversible Three-Heat-Source Absorption Heat Pump
,”
Energy Convers. Manage.
,
90
, pp.
175
183
.
12.
Li
,
J.
,
Chen
,
L.
, and
Sun
,
F.
,
2011
, “
Ecological Performance of an Endoreversible Carnot Heat Engine With Complex Heat Transfer law
,”
Int. J. Sust. Energy
,
30
(
1
), pp.
55
64
.
13.
Ahmadi
,
M. H.
,
Sayyaadi
,
H.
,
Dehghani
,
S.
, and
Hosseinzade
,
H.
,
2013
, “
Designing a Solar Powered Stirling Heat Engine Based on Multiple Criteria: Maximized Thermal Efficiency and Power
,”
Energy Convers. Manage.
,
75
, pp.
282
291
.
14.
Toffolo
,
A.
, and
Lazzaretto
,
A.
,
2002
, “
Evolutionary Algorithms for Multi-Objective Energetic and Economic Optimization in Thermal System Design
,”
Energy
,
27
(
6
), pp.
549
567
.
15.
Arora
,
R.
,
Kaushik
,
S. C.
,
Kumar
,
R.
, and
Arora
,
R.
,
2016
, “
Multi-Objective Thermo-Economic Optimization of Solar Parabolic Dish Stirling Heat Engine With Regenerative Losses Using NSGA-II and Decision Making
,”
Electr. Power Energy Syst.
,
74
, pp.
25
35
.
16.
Sayyaadi
,
H.
,
Ahmadi
,
M. H.
, and
Dehghani
,
S.
,
2015
, “
Optimal Design of a Solar-Driven Heat Engine Based on Thermal and Ecological Criteria
,”
J. Energy Eng.
,
141
(
3
), p.
04014012
.
17.
Nazari
,
N.
,
Heidarnejad
,
P.
, and
Porkhial
,
S.
,
2016
, “
Multi-Objective Optimization of a Combined Steam-Organic Rankine Cycle Based on Exergy and Exergo-Economic Analysis for Waste Heat Recovery Application
,”
Energy Convers. Manage.
,
127
, pp.
366
379
.
18.
Asgari
,
S.
,
Noorpoor
,
A. R.
, and
Boyaghchi
,
F. A.
,
2017
, “
Parametric Assessment and Multi-Objective Optimization of an Internal Auto-Cascade Refrigeration Cycle Based on Advanced Exergy and Exergoeconomic Concepts
,”
Energy
,
125
, pp.
576
590
.
19.
El-Emam
,
R. S.
, and
Dincer
,
I.
,
2017
, “
Assessment and Evolutionary Based Multi-Objective Optimization of a Novel Renewable-Based Polygeneration Energy System
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012003
.
20.
Ghasemkhani
,
A.
,
Farahat
,
S.
, and
Naserian
,
M. M.
,
2018
, “
Multi-Objective Optimization and Decision Making of Endoreversible Combined Cycles With Consideration of Different Heat Exchangers by Finite Time Thermodynamics
,”
Energy Convers. Manage.
,
171
, pp.
1052
1062
.
21.
Salim
,
M. S.
, and
Kim
,
M.-H.
,
2019
, “
Multi-Objective Thermo-Economic Optimization of a Combined Organic Rankine Cycle and Vapour Compression Refrigeration Cycle
,”
Energy Convers. Manage.
,
199
, p.
112054
.
22.
Yong
,
L.
,
Jian
,
L.
,
Lijun
,
X.
, and
Bo
,
L.
,
2020
, “
Simulation and Experimental Study of a Diesel Engine Based on an Electro-Hydraulic FVVA System Optimization
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
032204
.
23.
Eren Bekiloğlu
,
H.
,
Bedir
,
H.
, and
Anlaş
,
G.
,
2020
, “
Organic Rankine Cycle Optimization With Explicit Designs of Evaporator and Radial Inflow Turbine
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
072103
.
24.
Naeimi
,
M. M.
,
Salehi
,
G. R.
, and
Yazdi
,
M. E.
,
2020
, “
Advanced Exergy, Exergoeconomic, Solar Hybrid Trigeneration System Based on Solar-Gas Turbine for an Office Building
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022102
.
25.
Nag
,
P. K.
,
2005
,
Engineering Thermodynamics
,
Tata McGraw-Hill
,
India
.
You do not currently have access to this content.