Abstract

The innovative common feeding (CF) fuel injection system has been designed for a light duty commercial vehicle diesel engine in order to reduce production costs and to allow easy installation on the engine, compared with a common rail (CR) system. In the CF apparatus, an additional delivery chamber is mechanically fixed at the high-pressure pump outlet, and the rail is removed from the hydraulic circuit. Experimental tests have been carried out on a hydraulic test rig in order to compare the general performance of the prototypal CF system with those of a CR system equipped with different rail volumes. In the cases of the double injections, the fluctuations of the injected mass pertaining to the second injections have been investigated during dwell time (DT) sweeps, and design solutions have been provided to minimize such oscillations. Moreover, an injection system numerical diagnostic model has been validated, and the reduced accumulation volumes linked phenomena have been analyzed. In general, the performance of the injection systems with different hydraulic capacitances or shapes of the accumulator are similar. One difference is that the injection rate features slightly different slopes during the rising phases; furthermore, cycle-to-cycle dispersions in the injected mass increase to some extent when the hydraulic capacitance is dramatically decreased. Finally, the frequencies of the free pressure waves, due to the water hammer occurring at the end of a hydraulic injection, are different when the shape of the accumulation volume changes, whereas these frequencies are independent of the accumulation volume sizes.

References

1.
Zhang
,
J.
,
Chen
,
G.
,
Shen
,
Y.
, and
Li
,
B.
,
2021
, “
Effects of Oxygenated Biomass Fuels on the Performance of Diesel Engine and After-Treatment System
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
082304
. 10.1115/1.4049282
2.
Li
,
X.
,
Cheng
,
Y.
,
Ji
,
S.
, and
Lan
,
X.
,
2017
, “
Influence of Key Structural Parameters of Combustion Chamber on the Performance of Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042203
. 10.1115/1.4036049
3.
Dumitrescu
,
C. E.
,
Cheng
,
A. S.
, and
Mueller
,
C. J.
,
2017
, “
A Comparison of Methyl Decanoate and Tripropylene Glycol Monomethyl Ether for Soot-Free Combustion in an Optical Direct-Injection Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042210
. 10.1115/1.4036330
4.
Badra
,
J. A.
,
Khaled
,
F.
,
Tang
,
M.
,
Pei
,
Y.
,
Kodavasal
,
J.
,
Pal
,
P.
, and
Owoyele
,
O.
,
2021
, “
Engine Combustion System Optimization Using Computational Fluid Dynamics and Machine Learning: A Methodological Approach
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022306
. 10.1115/1.4047978
5.
Zhao
,
J.
,
Wei
,
L.
, and
Yue
,
P.
,
2019
, “
Investigation of Maximum Temperature Rise on High Pressure Common Rail Injector Nozzle
,”
SAE Technical Paper 2019-01-0276
.
6.
Naoki
,
W.
,
Naoki
,
K.
,
Scott
,
S.
,
Emre
,
C.
,
Koji
,
Y.
, and
Lyle
,
P.
,
2019
, “
Ignition and Soot Formation/Oxidation Characteristics of Compositionally Unique International Diesel Blends
,”
SAE Technical Paper 2019-01-0548
.
7.
Duan
,
L.
,
Yuan
,
S.
,
Hu
,
L.
,
Yang
,
W.
,
Yu
,
J.
, and
Xia
,
X.
,
2016
, “
Injection Performance and Cavitation Analysis of an Advanced 250 MPa Common Rail Diesel Injector
,”
Int. J. Heat Mass Transfer
,
93
, pp.
388
397
. 10.1016/j.ijheatmasstransfer.2015.10.028
8.
Soriano
,
J. A.
,
Mata
,
C.
,
Armas
,
O.
, and
Ávila
,
C.
,
2018
, “
A Zero-Dimensional Model to Simulate Injection Rate From First Generation Common Rail Diesel Injectors Under Thermodynamic Diagnosis
,”
Energy
,
158
, pp.
845
858
. 10.1016/j.energy.2018.06.054
9.
Ferrari
,
A.
,
Mittica
,
A.
,
Pizzo
,
P.
, and
Jin
,
Z.
,
2018
, “
PID Controller Modelling and Optimization in CR Systems With Standard and Reduced Accumulators
,”
Int. J. Automotive Technol.
,
19
(
5
), pp.
771
781
. 10.1007/s12239-018-0074-4
10.
Ferrari
,
A.
,
Paolicelli
,
F.
, and
Pizzo
,
P.
,
2015
, “
The New-Generation of Solenoid Injectors Equipped With Pressure-Balanced Pilot Valves for Energy Saving and Dynamic Response Improvement
,”
Appl. Energy
,
151
, pp.
367
376
. 10.1016/j.apenergy.2015.03.074
11.
Hammer
,
J.
,
Naber
,
D.
,
Raff
,
M.
, and
Zeh
,
D.
,
2015
, “
Bosch Diesel Fuel Injection System—With Modularity From Entry up to High-End Segment
,”
9. Tagung Diesel- und Benzindirekteinspritzung 2014, Proceedings
,
Wiesbaden
,
2014
.
12.
Ferrari
,
A.
,
Mittica
,
A.
, and
Spessa
,
E.
,
2013
, “
Benefits of Hydraulic Layout Over Driving System in Piezo-Injectors and Proposal of a New-Concept CR Injector With an Integrated Minirail
,”
Appl. Energy
,
103
, pp.
243
255
. 10.1016/j.apenergy.2012.09.039
13.
Serizawa
,
K.
,
Ueda
,
D.
,
Mikami
,
N.
,
Tomida
,
Y.
, and
Weber
,
J.
,
2017
, “
Realizing Robust Combustion With High Response Diesel Injector With Controlled Diffusive Spray Nozzle and Closed Loop Injection Control
,”
SAE Technical Paper 2017-01-0845
.
14.
Suh
,
H.
,
2015
, “
Development of Wobble-Plate-Type Fuel Pump in Compression Ignition Engine Fueled With Dimethyl Ether
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032208
. 10.1115/1.4029104
15.
Ishiduka
,
K.
,
Uchiyama
,
K.
,
Higuchi
,
K.
,
Yamada
,
N.
,
Takeuchi
,
K.
,
Herrmann
,
O. E.
,
Nakagawa
,
M.
,
Joyce
,
M.
,
Körfer
,
T.
,
Laumen
,
H.J.
,
Ruhkamp
,
L.
,
Rajamani
,
V.
, and
Schönfeld
,
S.
,
2015
, “
Further Innovations for Diesel Fuel Injection Systems: Close-Loop Control of Fuel Quantity by i-Art
,”
19th Aachen Colloquium
,
Aachen, Germany
.
16.
Ferrari
,
A.
,
Novara
,
C.
,
Paolucci
,
E.
,
Vento
,
O.
,
Violante
,
M.
, and
Zhang
,
T.
,
2018
, “
Design and Rapid Prototyping of a Closed-Loop Control Strategy of the Injected Mass for the Reduction of CO2, Combustion Noise and Pollutant Emissions in Diesel Engines
,”
Appl. Energy
,
232
, pp.
358
367
. 10.1016/j.apenergy.2018.09.028
17.
Ferrari
,
A.
,
Novara
,
C.
,
Paolucci
,
E.
,
Vento
,
O.
,
Violante
,
M.
, and
Zhang
,
T.
,
2018
, “
A New Closed-Loop Control of the Injected Mass for a Full Exploitation of Digital and Continuous Injection-Rate Shaping
,”
Energy Convers. Manage.
,
177
, pp.
629
639
. 10.1016/j.enconman.2018.08.037
18.
Zhang
,
K.
,
Xie
,
Z.
, and
Zhou
,
M.
,
2017
, “
Model-Based Optimization and Pressure Fluctuation Control of Pressure Reservoir in Electrically Controlled Fuel Injection System for Single Cylinder Diesel Engine
,”
Proceedings of the ASME 2017 Internal Combustion Engine Division Fall Technical Conference
,
Seattle, WA
,
Oct. 15–18, 2017
, ICEF2017-3513.
19.
Catania
,
A. E.
, and
Ferrari
,
A.
,
2012
, “
Development and Performance Assessment of the New-Generation CF Fuel Injection System for Diesel Passenger Cars
,”
Appl. Energy
,
91
(
1
), pp.
483
495
. 10.1016/j.apenergy.2011.08.047
20.
Ferrari
,
A.
,
Paolicelli
,
F.
, and
Pizzo
,
P.
,
2016
, “
Hydraulic Performance Comparison Between the Newly Designed Common Feeding and Standard Common Rail Injection Systems for Diesel Engines
,”
ASME J. Eng. Gas Turbines Power
,
138
(
9
), p.
092801
. 10.1115/1.4032644
21.
Catania
,
A. E.
,
Ferrari
,
A.
,
Mittica
,
A.
, and
Spessa
,
E.
,
2007
, “
Common Rail Without Accumulator: Development, Theoretical-Experimental Analysis and Performance Enhancement at DI-HCCI Level of a New Generation FIS
,”
SAE Paper No. 2007-01-1258, SAE Paper World Congress
,
Detroit, MI
.
22.
Catania
,
A. E.
, and
Ferrari
,
A.
,
2011
, “
Experimental Analysis, Modeling, and Control of Volumetric Radial-Piston Pumps
,”
ASME J. Fluid. Eng.
,
133
(
8
), p.
081103
. 10.1115/1.4004443
23.
Ferrari
,
A.
, and
Zhang
,
T.
,
2019
, “
Benchmark Between Bosch and Zeuch Method–Based Flowmeters for the Measurement of the Fuel Injection Rate
,”
Int. J. Engine Res.
,
22
(
1
), pp.
316
327
. https://doi.org/10.1177/1468087419827732
24.
Ferrari
,
A.
,
Mittica
,
A.
,
Pizzo
,
P.
,
Wu
,
X.
, and
Zhou
,
H.
,
2018
, “
New Methodology for the Identification of the Leakage Paths and Guidelines for the Design of Common Rail Injectors with Reduced Leakage
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p.
022801
. 10.1115/1.4037862
25.
Ferrari
,
A.
, and
Mittica
,
A.
,
2013
, “
Thermodynamic Formulation of the Constitutive Equations for Solids and Fluids
,”
Energy Convers. Manage.
,
66
, pp.
77
86
. 10.1016/j.enconman.2012.09.028
26.
Catania
,
A. E.
,
Ferrari
,
A.
,
Manno
,
M.
, and
Spessa
,
E.
,
2008
, “
Experimental Investigation of Dynamics Effects on Multiple-Injection Common Rail System Performance
,”
ASME J. Eng. Gas Turbines Power
,
131
(
3
), p.
032806
. 10.1115/1.2835353
27.
Catania
,
A. E.
, and
Ferrari
,
A.
,
2008
, “
Development and Assessment of a New Operating Principle for the Measurement of Unsteady Flow Rates in High-Pressure Pipelines
,”
Flow Measurement Instrumentation
,
20
(
6
), pp.
230
240
. 10.1016/j.flowmeasinst.2009.08.004
28.
d'Ambrosio
,
S.
, and
Ferrari
,
A.
,
2016
, “
Effects of Pilot Injection Parameters on Low Temperature Combustion Diesel Engines Equipped With Solenoid Injectors Featuring Conventional and Rate-Shaped Main Injection
,”
Energy Convers. Manage.
,
110
, pp.
457
468
. 10.1016/j.enconman.2015.12.014
29.
Catania
,
A. E.
,
Ferrari
,
A.
, and
Spessa
,
E.
,
2009
, “
Numerical-Experimental Study and Solutions to Reduce the Dwell-Time Threshold for Fusion-Free Consecutive Injections in a Multijet Solenoid-Type CR System
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
022804
. 10.1115/1.2938394
30.
Ferrari
,
A.
, and
Mittica
,
A.
,
2016
, “
Response of Different Injector Typologies to Dwell Time Variations and a Hydraulic Analysis of Closely-Coupled and Continuous Rate Shaping Injection Schedules
,”
Appl. Energy
,
169
, pp.
899
911
. 10.1016/j.apenergy.2016.01.120
31.
Ferrari
,
A.
, and
Mittica
,
A.
,
2012
, “
FEM Modeling of the Piezoelectric Driving System in the Design of Direct-Acting Diesel Injectors
,”
Appl. Energy
,
99
, pp.
471
483
. 10.1016/j.apenergy.2012.05.048
32.
Baratta
,
M.
,
Catania
,
A. E.
, and
Ferrari
,
A.
,
2008
, “
Hydraulic Circuit Design Rules to Remove the Dependence of the Injected Fuel Amount on Dwell Time in Multijet CR Systems
,”
ASME J. Eng. Gas Turbines Power
,
130
(
12
), p.
121104
. 10.1115/1.2969443
33.
Ferrari
,
A.
, and
Zhang
,
T.
,
2020
, “
Influence of the Injector Setup on Digital and Continuous Injection Rate-Shaping Performance in Diesel Engine Passenger Cars
,”
Energy Convers. Manage.
,
205
, p.
112259
. 10.1016/j.enconman.2019.112259
34.
Catania
,
A. E.
,
Ferrari
,
A.
, and
Spessa
,
E.
,
2008
, “
Temperature Variations in the Simulation of High-Pressure Injection-System Transient Flows Under Cavitation
,”
Int. J. Heat Mass Transfer
,
51
(
7–8
), pp.
2090
2107
. 10.1016/j.ijheatmasstransfer.2007.11.032
35.
Ferrari
,
A.
, and
Vento
,
O.
,
2020
, “
Influence of Frequency-Dependent Friction Modeling on the Simulation of Transient Flows in High-Pressure Flow Pipelines
,”
ASME J. Fluid. Eng.
,
142
(
8
), p.
081205
. 10.1115/1.4046623
36.
Ferrari
,
A.
, and
Pizzo
,
P.
,
2017
, “
Fully Predictive Common Rail Fuel Injection Apparatus Model and Its Application to Global System Dynamics Analysis
,”
Int. J. Engine Res.
,
18
(
3
), pp.
273
290
. 10.1177/1468087416653246
You do not currently have access to this content.