Abstract

This paper presents a comparative study on combustion and emissions of hydrogen-enriched biogas premixed charge direct injection dual-fuel (DIDF) engine and indirect injection dual-fuel (IDIDF) engine. The results show that the IDIDF engine outperforms the DIDF engine in terms of higher indicative engine cycle work (Wi) and lower emissions of CO, soot, and noise, but the disadvantage is higher NOx emission. Under the same fueling condition, the IDIDF engine’s Wi is on average 6% higher than that of the DIDF engine, but the NOx concentration in the combustion products of the IDIDF engine is 1.5 times higher than that of the DIDF engine. The IDIDF engine creates the stratified mixture distribution with higher O2 concentration in the auxiliary combustion chamber, which is favorable for auto-ignition and reduces the ignition delay. The biogas composition affects slightly CO and soot emissions, but significantly affects NOx emission. When the methane composition in biogas increases from 60% to 80%, the soot volume fraction is approximately 0.1 ppm in both types of combustion chambers, the CO concentration varies from 1.4% to 1.8%, and the NOx concentration varies from 3000 to 5000 ppm in the case of IDIDF engine and 2500–4500 ppm in the case of DIDF engine. For both types of dual-fuel engines, when engine speed increases, CO concentration and the soot volume fraction increase, while Wi and NOx concentration decrease.

References

1.
Gürbüz
,
H.
, and
Demirtürk
,
S.
,
2020
, “
Investigation of Dual-Fuel Combustion by Different Port Injection Fuels (Neat Ethanol and E85) in a DE95 Diesel/Ethanol Blend Fueled Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122306
.
2.
Cao
,
D. N.
,
Hoang
,
A. T.
,
Luu
,
H. Q.
,
Bui
,
V. G.
, and
Tran
,
T. T. H.
,
2020
, “
Effects of Injection Pressure on the NOx and PM Emission Control of Diesel Engine: A Review Under the Aspect of PCCI Combustion Condition
,”
Energy Sources Part A
, pp.
1
18
.
3.
Hoang
,
A. T.
,
Nižetić
,
S.
,
Ölçer
,
A. I.
, and
Ong
,
H. C.
,
2021
, “
Synthesis Pathway and Fundamental Combustion Mechanism of a Sustainable Biofuel 2,5-Dimethylfuran: Progress and Prospective
,”
Fuel
,
286
, p.
119337
.
4.
Nguyen
,
H. P.
,
Hoang
,
A. T.
,
Nizetic
,
S.
,
Nguyen
,
X. P.
,
Le
,
A. T.
,
Luong
,
C. N.
,
Chu
,
V. D.
, and
Pham
,
V. V.
,
2020
, “
The Electric Propulsion System as a Green Solution for Management Strategy of CO2 Emission in Ocean Shipping: A Comprehensive Review
,”
Int. Trans. Electr. Energy Syst.
, p.
e12580
.
5.
Selim
,
O. M.
,
Abousabae
,
M.
,
Hasan
,
A.
, and
Amano
,
R. S.
,
2021
, “
Analysis of Energy Savings and CO2 Emission Reduction Contribution for Industrial Facilities in USA
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
082303
.
6.
Nguyen
,
X. P.
,
Hoang
,
A. T.
,
Ölçer
,
A. I.
,
Engel
,
D.
,
Pham
,
V. V.
, and
Nayak
,
S. K.
,
2021
, “
Biomass-Derived 2,5-Dimethylfuran as a Promising Alternative Fuel: An Application Review on the Compression and Spark Ignition Engine
,”
Fuel Process. Technol.
214
, p.
106687
.
7.
Hoang
,
A. T.
,
2018
, “
Waste Heat Recovery From Diesel Engines Based on Organic Rankine Cycle
,”
Appl. Energy
,
231
, pp.
138
166
.
8.
Sanli
,
A.
,
Yılmaz
,
I. T.
, and
Gümüş
,
M.
,
2020
, “
Assessment of Combustion and Exhaust Emissions in a Common-Rail Diesel Engine Fueled With Methane and Hydrogen/Methane Mixtures Under Different Compression Ratio
,”
Int. J. Hydrogen Energy
,
45
(
4
), pp.
3263
3283
.
9.
Hoang
,
A. T.
,
Le
,
A. T.
, and
Pham
,
V. V.
,
2019
, “
A Core Correlation of Spray Characteristics, Deposit Formation, and Combustion of a High-Speed Diesel Engine Fueled With Jatropha Oil and Diesel Fuel
,”
Fuel
,
244
, pp.
159
175
.
10.
Dimitriou
,
P.
, and
Tsujimura
,
T.
,
2017
, “
A Review of Hydrogen as a Compression Ignition Engine Fuel
,”
Int. J. Hydrogen Energy
,
42
(
38
), pp.
24470
24486
.
11.
Frankel
,
A.
,
2017
, “
Volvo Boss Predicts the Death of Diesel
,” https://www.autocar.co.uk/car-news/motor-shows-geneva-motor-show/volvo-boss-predicts-death-diesel
12.
Chen
,
W.
,
Liang
,
J.
,
Yang
,
Z.
, and
Li
,
G.
,
2019
, “
A Review of Lithium-Ion Battery for Electric Vehicle Applications and Beyond
,”
Energy Procedia
,
158
, pp.
4363
4368
.
13.
Hoang
,
A. T.
,
Ölçer
,
A. I.
, and
Nižetić
,
S.
,
2020
, “
Prospective Review on the Application of Biofuel 2,5-Dimethylfuran to Diesel Engine
,”
J. Energy Inst.
,
94
, pp.
360
386
.
14.
Deheri
,
C.
,
Acharya
,
S. K.
,
Thatoi
,
D. N.
, and
Mohanty
,
A. P.
,
2020
, “
A Review on Performance of Biogas and Hydrogen on Diesel Engine in Dual Fuel Mode
,”
Fuel
,
260
, p.
116337
.
15.
Hoang
,
A. T.
,
Tabatabaei
,
M.
,
Aghbashlo
,
M.
,
Carlucci
,
A. P.
,
Ölçer
,
A. I.
,
Le
,
A. T.
, and
Ghassemi
,
A.
,
2021
, “
Rice Bran Oil-Based Biodiesel as a Promising Renewable Fuel Alternative to Petrodiesel: A Review
,”
Renew. Sustain. Energy Rev.
,
135
, p.
110204
.
16.
Atarod
,
P.
,
Khlaife
,
E.
,
Aghbashlo
,
M.
,
Tabatabaei
,
M.
,
Hoang
,
A. T.
,
Mobli
,
H.
,
Nadian
,
M. H.
,
Hosseinzadeh-Bandbafha
,
H.
,
Mohammadi
,
P.
,
Shojaei
,
T. R.
,
Mahian
,
O.
,
Gu
,
H.
,
Peng
,
W.
, and
Lam
,
S. S.
,
2021
, “
Soft Computing-Based Modeling and Emission Control/Reduction of a Diesel Engine Fueled With Carbon Nanoparticle-Dosed Water/Diesel Emulsion Fuel
,”
J. Hazard. Mater.
,
407
, p.
124369
.
17.
Yousefi
,
A.
,
Birouk
,
M.
,
Lawler
,
B.
, and
Gharehghani
,
A.
,
2015
, “
Performance and Emissions of a Dual-Fuel Pilot Diesel Ignition Engine Operating on Various Premixed Fuels
,”
Energy Convers. Manage.
,
106
, pp.
322
336
.
18.
Hoang
,
A. T.
,
2019
, “
Experimental Study on Spray and Emission Characteristics of a Diesel Engine Fueled With Preheated Bio-Oils and Diesel Fuel
,”
Energy
,
171
, pp.
795
808
.
19.
Balasubramanian
,
D.
,
Hoang
,
A. T.
,
Venugopal
,
I. P.
,
Shanmugam
,
A.
,
Gao
,
J.
, and
Wongwuttanasatian
,
T.
,
2021
, “
Numerical and Experimental Evaluation on the Pooled Effect of Waste Cooking Oil Biodiesel/Diesel Blends and Exhaust Gas Recirculation in a Twin-Cylinder Diesel Engine
,”
Fuel
,
287
, p.
119815
.
20.
Van Ga
,
B.
,
Van Nam
,
T.
, and
Xuan
,
N. T. T.
,
2010
, “
Utilization of Biogas Engines in Rural Area: A Contribution to Climate Change Mitigation
,”
Colloque International RUNSUD
,
Universite Nice, Sophia Antipolis, France
, pp.
19
31
.
21.
Sharma
,
P.
, and
Dhar
,
A.
,
2018
, “
Compression Ratio Influence on Combustion and Emissions Characteristic of Hydrogen Diesel Dual Fuel CI Engine: Numerical Study
,”
Fuel
,
222
, pp.
852
858
.
22.
Saxena
,
S.
, and
Bedoya
,
I. D.
,
2013
, “
Fundamental Phenomena Affecting Low Temperature Combustion and HCCI Engines, High Load Limits and Strategies for Extending These Limits
,”
Prog. Energy Combust. Sci.
,
39
(
5
), pp.
457
488
.
23.
Yao
,
M.
,
Zheng
,
Z.
, and
Liu
,
H.
,
2009
, “
Progress and Recent Trends in Homogeneous Charge Compression Ignition (HCCI) Engines
,”
Prog. Energy Combust. Sci.
,
35
(
5
), pp.
398
437
.
24.
Benajes
,
J.
,
García
,
A.
,
Monsalve-Serrano
,
J.
, and
Boronat
,
V.
,
2017
, “
An Investigation on the Particulate Number and Size Distributions Over the Whole Engine Map From an Optimized Combustion Strategy Combining RCCI and Dual-Fuel Diesel-Gasoline
,”
Energy Convers. Manage.
,
140
, pp.
98
108
.
25.
Nazemi
,
M.
, and
Shahbakhti
,
M.
,
2016
, “
Modeling and Analysis of Fuel Injection Parameters for Combustion and Performance of an RCCI Engine
,”
Appl. Energy
,
165
, pp.
135
150
.
26.
Zhang
,
C.
,
Zhou
,
A.
,
Shen
,
Y.
,
Li
,
Y.
, and
Shi
,
Q.
,
2017
, “
Effects of Combustion Duration Characteristic on the Brake Thermal Efficiency and NOx Emission of a Turbocharged Diesel Engine Fueled With Diesel-LNG Dual-Fuel
,”
Appl. Therm. Eng.
,
127
, pp.
312
318
.
27.
Yang
,
B.
,
Wang
,
L.
,
Ning
,
L.
, and
Zeng
,
K.
,
2016
, “
Effects of Pilot Injection Timing on the Combustion Noise and Particle Emissions of a Diesel/Natural Gas Dual-Fuel Engine at Low Load
,”
Appl. Therm. Eng.
,
102
, pp.
822
828
.
28.
Escalante Soberanis
,
M. A.
, and
Fernandez
,
A. M.
,
2010
, “
A Review on the Technical Adaptations for Internal Combustion Engines to Operate With Gas/Hydrogen Mixtures
,”
Int. J. Hydrogen Energy
,
35
(
21
), pp.
12134
12140
.
29.
Wang
,
Z.
,
Zhao
,
Z.
,
Wang
,
D.
,
Tan
,
M.
,
Han
,
Y.
,
Liu
,
Z.
, and
Dou
,
H.
,
2016
, “
Impact of Pilot Diesel Ignition Mode on Combustion and Emissions Characteristics of a Diesel/Natural Gas Dual Fuel Heavy-Duty Engine
,”
Fuel
,
167
, pp.
248
256
.
30.
Bui
,
V. G.
,
Tran
,
V. N.
,
Le
,
M. T.
, and
Bui
,
T. M. T.
,
2014
, “
Combustion Analysis of Biogas Premixed Charge Diesel Dual Fuelled Engine
,”
Int. J. Eng. Res. Sci. Technol.
,
3
(
11
), pp.
188
194
.
31.
Van Ga
,
B.
, and
Tu
,
B. T. M.
,
2017
, “
Soot Emission Analysis in Combustion of Biogas Diesel Dual Fuel Engine
,”
Int. J. Environ. Sci. Sustain. Dev.
,
2
(
1
), pp.
67
79
.
32.
Van Ga
,
B.
,
Van Nam
,
T.
,
Tu
,
B. T. M.
, and
Trung
,
N. Q.
,
2018
, “
Numerical Simulation Studies on Performance, Soot and NOx Emissions of Dual-Fuel Engine Fuelled With Hydrogen Enriched Biogas Mixtures
,”
IET Renew. Power Gener.
,
12
(
10
), pp.
1111
1118
.
33.
Sahoo
,
B. B.
,
Sahoo
,
N.
, and
Saha
,
U. K.
,
2009
, “
Effect of Engine Parameters and Type of Gaseous Fuel on the Performance of Dual-Fuel Gas Diesel Engines—A Critical Review
,”
Renew. Sustain. Energy Rev.
,
13
(
6–7
), pp.
1151
1184
.
34.
Imran
,
S.
,
Emberson
,
D. R.
,
Diez
,
A.
,
Wen
,
D. S.
,
Crookes
,
R. J.
, and
Korakianitis
,
T.
,
2014
, “
Natural Gas Fueled Compression Ignition Engine Performance and Emissions Maps With Diesel and RME Pilot Fuels
,”
Appl. Energy
,
124
, pp.
354
365
.
35.
Zareei
,
J.
,
Rohani
,
A.
, and
Wan Mahmood
,
W. M. F.
,
2018
, “
Simulation of a Hydrogen/Natural Gas Engine and Modelling of Engine Operating Parameters
,”
Int. J. Hydrogen Energy
,
43
(
25
), pp.
11639
11651
.
36.
Van Ga
,
B.
, and
Thai
,
P. Q.
,
2020
, “
Soot Emission Reduction in a Biogas-DME Hybrid Dual-Fuel Engine
,”
Appl. Sci.
,
10
(
10
), p.
3416
.
37.
Ouchikh
,
S.
,
Lounici
,
M. S.
,
Tarabet
,
L.
,
Loubar
,
K.
, and
Tazerout
,
M.
,
2019
, “
Effect of Natural Gas Enrichment With Hydrogen on Combustion Characteristics of a Dual Fuel Diesel Engine
,”
Int. J. Hydrogen Energy
,
44
(
26
), pp.
13974
13987
.
38.
Lounici
,
M. S.
,
Loubar
,
K.
,
Tarabet
,
L.
,
Balistrou
,
M.
,
Niculescu
,
D.-C.
, and
Tazerout
,
M.
,
2014
, “
Towards Improvement of Natural Gas-Diesel Dual Fuel Mode: An Experimental Investigation on Performance and Exhaust Emissions
,”
Energy
,
64
, pp.
200
211
.
39.
Li
,
W.
,
Liu
,
Z.
, and
Wang
,
Z.
,
2016
, “
Experimental and Theoretical Analysis of the Combustion Process at Low Loads of a Diesel Natural Gas Dual-Fuel Engine
,”
Energy
,
94
, pp.
728
741
.
40.
Mittal
,
M.
,
Donahue
,
R.
,
Winnie
,
P.
, and
Gillette
,
A.
,
2015
, “
Exhaust Emissions Characteristics of a Multi-Cylinder 18.1-L Diesel Engine Converted to Fueled With Natural Gas and Diesel Pilot
,”
J. Energy Inst.
,
88
(
3
), pp.
275
283
.
41.
Bui
,
V. G.
,
Tran
,
V. N.
,
Hoang
,
A. T.
,
Bui
,
T. M. T.
, and
Vo
,
A. V.
,
2020
, “
A Simulation Study on a Port-Injection SI Engine Fueled With Hydroxy-Enriched Biogas
,”
Energy Sources Part A
, pp.
1
17
.
42.
Mustafi
,
N. N.
,
Raine
,
R. R.
, and
Verhelst
,
S.
,
2013
, “
Combustion and Emissions Characteristics of a Dual Fuel Engine Operated on Alternative Gaseous Fuels
,”
Fuel
,
109
, pp.
669
678
.
43.
Ayache
,
A.
, and
Birouk
,
M.
,
2019
, “
Experimental Study of Turbulent Burning Velocity of Premixed Biogas Flame
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032202
.
44.
Talibi
,
M.
,
Hellier
,
P.
, and
Ladommatos
,
N.
,
2017
, “
Combustion and Exhaust Emission Characteristics, and In-Cylinder Gas Composition, of Hydrogen Enriched Biogas Mixtures in a Diesel Engine
,”
Energy
,
124
, pp.
397
412
.
45.
Verma
,
S.
,
Kumar
,
K.
,
Das
,
L. M.
, and
Kaushik
,
S. C.
,
2021
, “
Effect of Hydrogen Enrichment Strategy on Performance and Emission Features of Biodiesel-Biogas Dual Fuel Engine Using Simulation and Experimental Analyses
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
092301
.
46.
Hoang
,
A. T.
,
2020
, “
Critical Review on the Characteristics of Performance, Combustion and Emissions of PCCI Engine Controlled by Early Injection Strategy Based on Narrow-Angle Direct Injection (NADI)
,”
Energy Sources Part A
, pp.
1
15
.
47.
Le
,
V. V.
,
Hoang
,
A. T.
,
Nižetić
,
S.
, and
Ölçer
,
A. I.
,
2021
, “
Flame Characteristics and Ignition Delay Times of 2,5-Dimethylfuran: A Systematic Review With Comparative Analysis
,”
ASME J. Energy Resour. Technol.
,
143
(
7)
, p.
070801
.
48.
Shen
,
Z.
,
Liu
,
Z.
,
Tian
,
J.
, and
Liu
,
J.
,
2014
, “
Investigation of In-Cylinder Gas Stratification of Diesel Engine During Intake and Compression Stroke
,”
Energy
,
72
, pp.
671
679
.
49.
Sarkar
,
A.
, and
Saha
,
U. K.
,
2018
, “
Effect of Intake Charge Preheating and Equivalence Ratio in a Dual Fuel Diesel Engine Run on Biogas and Ethanol-Blended Diesel
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
041802
.
50.
Rahman
,
K. A.
, and
Ramesh
,
A.
,
2019
, “
Studies on the Effects of Methane Fraction and Injection Strategies in a Biogas Diesel Common Rail Dual Fuel Engine
,”
Fuel
,
236
, pp.
147
165
.
51.
Ashok
,
B.
,
Nanthagopal
,
K.
,
Anand
,
V.
,
Aravind
,
K. M.
,
Jeevanantham
,
A. K.
, and
Balusamy
,
S.
,
2019
, “
Effects of n-Octanol as a Fuel Blend With Biodiesel on Diesel Engine Characteristics
,”
Fuel
,
235
, pp.
363
373
.
52.
Nanthagopal
,
K.
,
Ashok
,
B.
,
Garnepudi
,
R. S.
,
Tarun
,
K. R.
, and
Dhinesh
,
B.
,
2019
, “
Investigation on Diethyl Ether as an Additive With Calophyllum inophyllum Biodiesel for CI Engine Application
,”
Energy Convers. Manage.
,
179
, pp.
104
113
.
53.
Karim
,
G.
,
2003
, “
Hydrogen as a Spark Ignition Engine Fuel
,”
Int. J. Hydrogen Energy
,
28
(
5
), pp.
569
577
.
54.
Bui
,
V. G.
,
Bui
,
T. M. T.
,
Nguyen
,
V. D.
, and
Bui
,
V. H.
,
2020
, “
Analysis of Combustion and NOx Formation in a SI Engine Fueled With HHO Enriched Biogas
,”
Environ. Eng. Manage. J.
,
19
(
5
), pp.
317
327
.
55.
Verhelst
,
S.
, and
Wallner
,
T.
,
2009
, “
Hydrogen-Fueled Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
35
(
6
), pp.
490
527
.
56.
Sadeghinezhad
,
E.
,
Kazi
,
S. N.
,
Sadeghinejad
,
F.
,
Badarudin
,
A.
,
Mehrali
,
M.
,
Sadri
,
R.
, and
Safaei
,
M. R.
,
2014
, “
A Comprehensive Literature Review of Bio-Fuel Performance in Internal Combustion Engine and Relevant Costs Involvement
,”
Renew. Sustain. Energy Rev.
,
30
, pp.
29
44
.
57.
Fayaz
,
H.
,
Saidur
,
R.
,
Razali
,
N.
,
Anuar
,
F. S.
,
Saleman
,
A. R.
, and
Islam
,
M. R.
,
2012
, “
An Overview of Hydrogen as a Vehicle Fuel
,”
Renew. Sustain. Energy Rev.
,
16
(
8
), pp.
5511
5528
.
58.
Christodoulou
,
F.
, and
Megaritis
,
A.
,
2013
, “
Experimental Investigation of the Effects of Separate Hydrogen and Nitrogen Addition on the Emissions and Combustion of a Diesel Engine
,”
Int. J. Hydrogen Energy
,
38
(
24
), pp.
10126
10140
.
59.
Talibi
,
M.
,
Hellier
,
P.
,
Balachandran
,
R.
, and
Ladommatos
,
N.
,
2014
, “
Effect of Hydrogen-Diesel Fuel Co-Combustion on Exhaust Emissions With Verification Using an In-Cylinder Gas Sampling Technique
,”
Int. J. Hydrogen Energy
,
39
(
27
), pp.
15088
15102
.
60.
Kokjohn
,
S. L.
,
Musculus
,
M. P. B.
, and
Reitz
,
R. D.
,
2015
, “
Evaluating Temperature and Fuel Stratification for Heat-Release Rate Control in a Reactivity-Controlled Compression-Ignition Engine Using Optical Diagnostics and Chemical Kinetics Modeling
,”
Combust. Flame
,
162
(
6
), pp.
2729
2742
.
61.
Shen
,
Z.
,
Cui
,
W.
,
Liu
,
Z.
,
Tian
,
J.
,
Wu
,
S.
, and
Yang
,
J.
,
2016
, “
Distribution Evolution of Intake and Residual Gas Species During CO2 Stratification Combustion in Diesel Engine
,”
Fuel
,
166
, pp.
427
435
.
62.
Huang
,
J.
,
Lin
,
L.
,
Wang
,
Y.
,
Qin
,
J.
,
Roskilly
,
A. P.
,
Li
,
L.
,
Ouyang
,
T.
, and
Yu
,
Y.
,
2011
, “
Experimental Study of the Performance and Emission Characteristics of Diesel Engine Using Direct and Indirect Injection Systems and Different Fuels
,”
Fuel Process. Technol.
,
92
(
7
), pp.
1380
1386
.
63.
Yousefi
,
A.
, and
Birouk
,
M.
,
2017
, “
Investigation of Natural Gas Energy Fraction and Injection Timing on the Performance and Emissions of a Dual-Fuel Engine With Pre-Combustion Chamber Under Low Engine Load
,”
Appl. Energy
,
189
, pp.
492
505
.
64.
Le
,
A. T.
,
Quoc
,
T. D.
,
Tam
,
T. T.
,
Tuan
,
H. A.
, and
Van Viet
,
P.
,
2020
, “
Performance and Combustion Characteristics of a Retrofitted CNG Engine Under Various Piston-Top Shapes and Compression Ratios
,”
Energy Sources Part A
, pp.
1
17
.
65.
Khatri
,
N.
, and
Khatri
,
K. K.
,
2020
, “
Hydrogen Enrichment on Diesel Engine With Biogas in Dual Fuel Mode
,”
Int. J. Hydrogen Energy
,
45
(
11
), pp.
7128
7140
.
66.
Ghosh
,
A.
,
2016
, “
Combustion Chambers in CI Engines: A Review
,”
Proceedings of National Conference on Recent Innovations in Science Engineering & Technology
,
Pune, India
,
Jan. 31
, pp.
41
44
.
67.
Hotta
,
Y.
,
Nakakita
,
K.
,
Inayoshi
,
M.
,
Ogawa
,
T.
,
Sato
,
T.
, and
Yamada
,
M.
,
1997
, “
Combustion Improvement for Reducing Exhaust Emissions in IDI Diesel Engine
,”
JSAE Rev.
,
18
(
1
), pp.
19
31
.
68.
Bui
,
V. G.
,
Tran
,
V. N.
,
Nguyen
,
V. D.
,
Nguyen
,
Q. T.
, and
Huynh
,
T. T.
,
2019
, “
Octane Number Stratified Mixture Preparation by Gasoline–Ethanol Dual Injection in SI Engines
,”
Int. J. Environ. Sci. Technol.
,
16
(
7
), pp.
3021
3034
.
69.
Van Ga
,
B.
,
Van Nam
,
T.
,
Quang Trung
,
N.
, and
Tan Tien
,
H.
,
2019
, “
Evaporation and Mixture Formation of Gasoline–Ethanol Sprays in Spark Ignition Engines With Pre-Blended Injection and Dual Injection: A Comparative Study
,”
IET Renew. Power Gener.
,
13
(
4
), pp.
539
548
.
70.
Mohammadi
,
M.
, and
Neshat
,
E.
,
2020
, “
Accurate Prediction of NOx Emissions From Diesel Engines Considering In-Cylinder Ion Current
,”
Environ. Pollut.
,
266
, p.
115347
.
71.
Magnussen
,
B. F.
, and
Hjertager
,
B. H.
,
1977
, “
On Mathematical Modeling of Turbulent Combustion With Special Emphasis on Soot Formation and Combustion
,”
Symp. Combust.
,
16
(
1
), pp.
719
729
.
72.
Vignon
,
J. M.
, and
Van Ga
,
B.
,
1995
, “
Calcul de Flammes de Diffusion Verticales par un Modele Integral
,”
Joint Meeting the French and German Section of the Combustion Institute
,
Mulhouse, France
, pp.
11
13
.
73.
Bui
,
V. G.
,
Duon
,
V. D.
,
Nguyen
,
V. H.
,
Nguyen
,
V. A.
, and
Vo
,
A. V.
,
2014
, “
Experimental Study of Performance of Biogas-Diesel Dual Fuel Engine
,”
J. Sci. Technol. Danang Univ.
,
11
(
84
), pp.
1
6
.
74.
Bui
,
V. G.
,
Nguyen
,
V. H.
,
Nguyen
,
V. A.
,
Vo
,
A. V.
, and
Bui
,
V. H.
,
2015
, “
In-Cylinder Pressure Analysis in Biogas-Diesel Dual Fuel Engine by Simulation and Experiment
,”
J. Sci. Technol. Danang Univ.
,
1
(
86
), pp.
24
29
.
75.
Gunea
,
C.
,
Razavi
,
M. R. M.
, and
Karim
,
G. A.
,
1998
, “
The Effects of Pilot Fuel Quality on Dual Fuel Engine Ignition Delay
,”
SAE Technical Paper Series
, Vol. 1.
76.
Agarwal
,
A.
, and
Assanis
,
D. N.
,
1998
, “
Multi-Dimensional Modeling of Natural Gas Ignition Under Compression Ignition Conditions Using Detailed Chemistry
,”
SAE Technical Paper Series
, Vol. 1.
77.
Stelmasiak
,
Z.
,
2002
, “
The Impact of Gas–Air Composition on Combustion Parameters of Dual Fuel Engines Fed CNG
,”
SAE Technical Paper Series
, Vol. 1.
78.
Lilik
,
G. K.
,
Zhang
,
H.
,
Herreros
,
J. M.
,
Haworth
,
D. C.
, and
Boehman
,
A. L.
,
2010
, “
Hydrogen Assisted Diesel Combustion
,”
Int. J. Hydrogen Energy
,
35
(
9
), pp.
4382
4398
.
79.
Bose
,
P. K.
, and
Maji
,
D.
,
2009
, “
An Experimental Investigation on Engine Performance and Emissions of a Single Cylinder Diesel Engine Using Hydrogen as Inducted Fuel and Diesel as Injected Fuel With Exhaust Gas Recirculation
,”
Int. J. Hydrogen Energy
,
34
(
11
), pp.
4847
4854
.
80.
Sadiq
,
A. M.
,
Sleiti
,
A. K.
, and
Ahmed
,
S. F.
,
2020
, “
Turbulent Flames in Enclosed Combustion Chambers: Characteristics and Visualization—A Review
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
080801
.
You do not currently have access to this content.