Abstract

In this study, it is aimed to observe the bypass effects on energetic and exergetic performance in a JT3D-3B Military Aircraft Turbofan Engine and its components. For this aim, the comprehensive energy and exergy analyses are performed separately at the various bypass ratios: BPR: 1.30 (Case A), BPR: 1.34 (Case B), BPR: 1.38 (Case C), BPR: 1.40 (Case D), BPR: 1.42 (Case E), BPR: 1.45 (Case F), and BPR: 1.36 (original design). As per the performance results, while the energetic efficiency of the engine is found to be 27.93% for Case F, 27.85% for Case E, 27.72% for Case D, 27.60% for Case C, 27.17% for Case B, 26.97% for Case A, the exergetic efficiency of the engine is found to be 26.23% for Case F, 26.23% for Case E, 26.11% for Case D, 26.00% for Case C, 25.59% for Case B, and 25.39% for Case A, Furthermore, with the increase of bypass ratio step by step from 1.30 to 1.45, while the energetic efficiency, the exergetic efficiency, the relative exergy consumption value tends to increase, the fuel exergy waste ratio value, the productivity lack ratio, and exergetic improvement potential value of the overall engine tends to decrease. This study can be helpful for turbofan engine users, owners, and designers.

References

1.
Gohardani
,
A. S.
,
Doulgeris
,
G.
, and
Singh
,
R.
,
2011
, “
Challenges of Future Aircraft Propulsion: A Review of Distributed Propulsion Technology and Its Potential Application for the All Electric Commercial Aircraft
,”
Prog. Aerosp. Sci.
,
47
(
5
), pp.
369
391
.
2.
Whitelegg
,
J.
, and
Cambridge
,
H.
,
2004
,
Aviation and Sustainability: a Policy Paper
,
Stockholm Environment Institute
,
Stockholm
.
3.
Peeters
,
P. M.
,
Middel
,
J.
, and
Hoolhorst
,
A.
,
2005
, “
Fuel Efficiency of Commercial Aircraft: An Overview of Historical and Future Trends
,” (NLR-CR-2005-669). NLR.
4.
Turan
,
O.
,
Aydın
,
H.
,
Karakoc
,
T. H.
, and
Midilli
,
A.
,
2014
, “
First Law Approach of a Low Bypass Turbofan Engine
,”
J. Autom. Control Eng.
,
2
(
1
), pp.
62
66
.
5.
Param
,
H. K.
, and
Jianu
,
O. A.
,
2020
, “
Exergy Analysis of Heat Recovery Steam Generator: Effects of Supplementary Firing and Desuperheater
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
050908
.
6.
Verissimo
,
G. L.
,
Cruz
,
M. E.
, and
Leiroz
,
A. J. K.
,
2020
, “
Derivation of Entropy and Exergy Transport Equations, and Application to Second Law Analysis of Sugarcane Bagasse Gasification in Bubbling Fluidized Beds
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
062102
.
7.
Şöhret
,
Y.
, and
Gürbüz
,
H.
,
2021
, “
A Comparison of Gasoline, Liquid Petroleum Gas, and Hydrogen Utilization in an Spark Ignition Engine in Terms of Environmental and Economic Indicators
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052301
.
8.
Colorado-Garrido
,
D.
,
2019
, “
Advanced Exergy Analysis of a Compression–Absorption Cascade Refrigeration System
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042002
.
9.
Cican
,
G.
,
Plesu
,
V.
,
Deaconu
,
M.
,
Toma
,
A.
, and
Cretu
,
M.
,
2019
, “
Performances and Emissions Evaluation of a Microturbojet Engine Running on Biodiesel Blends
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
072003
.
10.
Etele
,
J.
, and
Rosen
,
M. A.
,
2001
, “
Sensitivity of Exergy Efficiencies of Aerospace Engines to Reference Environment Selection
,”
Exergy Int. J.
,
1
(
2
), pp.
91
99
.
11.
Tona
,
C.
,
Raviolo
,
P. A.
,
Pellegrini
,
L. F.
, and
de Oliveira Júnior
,
S.
,
2010
, “
Exergy and Thermoeconomic Analysis of a Turbofan Engine During a Typical Commercial Flight
,”
Energy
,
35
(
2
), pp.
952
959
.
12.
Turan
,
Ö
, and
Aydın
,
H.
,
2016
, “
Numerical Calculation of Energy and Exergy Flows of a Turboshaft Engine for Power Generation and Helicopter Applications
,”
Energy
,
115
, pp.
914
923
.
13.
Aygun
,
H.
, and
Turan
,
O.
,
2020
, “
Exergetic Sustainability Off-Design Analysis of Variable-Cycle Aero-engine in Various Bypass Modes
,”
Energy
,
195
, p.
117008
.
14.
Balli
,
O.
,
2017
, “
Advanced Exergy Analysis of a Turbofan Engine (TFE): Splitting Exergy Destruction Into Unavoidable/Avoidable and Endogenous/Exogenous
,”
Int. J. Turbo Jet Eng.
,
36
(
3
), pp.
305
327
.
15.
Gunston
,
B.
, and
Jane’s Information Group
,
2005
,
Jane’s: Aero-engines
,
Jane’s Information Group
,
Coulsdon, Surrey (UK)
.
16.
Çengel
,
Y. A.
, and
Boles
,
M. A.
,
2015
,
Thermodynamics: An Engineering Approach
, 8th ed.,
McGraw-Hill Education
,
New York
.
17.
Dong
,
Z.
,
Li
,
D.
,
Wang
,
Z.
, and
Sun
,
M.
,
2018
, “
A Review on Exergy Analysis of Aerospace Power Systems
,”
Acta Astronaut.
,
152
(
11
), pp.
486
495
.
18.
Pavelka
,
M.
,
Klika
,
V.
,
Vágner
,
P.
, and
Maršík
,
F.
,
2015
, “
Generalization of Exergy Analysis
,”
Appl. Energy
,
137
(
1
), pp.
158
172
.
19.
Akdeniz
,
H. Y.
, and
Balli
,
O.
,
2021
, “
‘Energetic and Exergetic Assessment of Operating Biofuel, Hydrogen and Conventional JP-8 in a J69 Type of Aircraft Turbojet Engine
,”
J. Therm. Anal. Calorim.
, submitted.
20.
Caglayan
,
H.
, and
Caliskan
,
H.
,
2021
, “
Advanced Exergy Analyses and Optimization of a Cogeneration System for Ceramic Industry by Considering Endogenous, Exogenous, Avoidable and Unavoidable Exergies Under Different Environmental Conditions
,”
Renewable Sustainable Energy Rev.
,
140
, p.
110730
.
21.
Caliskan
,
H.
,
Lee
,
D.-Y.
, and
Hong
,
H.
,
2020
, “
Assessments of High-Efficient Regenerative Evaporative Cooler Effects on Desiccant Air Cooling Systems
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
072101
.
22.
Caliskan
,
H.
,
2014
, “
Energy, Exergy, Thermoeconomic and Sustainability Analyses of a Building Heating System With a Combi-Boiler
,”
Int. J. Exergy
,
14
(
2
), p.
244
.
23.
Balli
,
O.
,
2014
, “
Afterburning Effect on the Energetic and Exergetic Performance of an Experimental Turbojet Engine (TJE)
,”
Int. J. Exergy
,
14
(
2
), p.
212
.
24.
Balli
,
O.
,
2017
, “
Exergy Modeling for Evaluating Sustainability Level of a High by-Pass Turbofan Engine Used on Commercial Aircrafts
,”
Appl. Therm. Eng.
,
123
(
14
), pp.
138
155
.
25.
Yildiz
,
I.
, and
Caliskan
,
H.
,
2018
, “
Energetic and Exergetic Carbon Dioxide Equivalents and Prices of the Energy Sources for Buildings in Turkey
,”
Environ. Prog. Sustainable Energy
,
37
(
2
), pp.
912
925
.
26.
Azhar
,
M.
, and
Siddiqui
,
M. A.
,
2019
, “
Exergy Analysis of Single to Triple Effect Lithium Bromide-Water Vapour Absorption Cycles and Optimization of the Operating Parameters
,”
Energy Convers. Manage
,
180
(
2
), pp.
1225
1246
.
27.
Azhar
,
M.
, and
Siddiqui
,
M. A.
,
2020
, “
Comprehensive Exergy Analysis and Optimization of Operating Parameters for Double Effect Parallel Flow Absorption Refrigeration Cycle
,”
Therm. Sci. Eng. Prog.
,
16
(
2
), p.
100464
.
28.
Bejan
,
A.
, and
Siems
,
D. L.
,
2001
, “
The Need for Exergy Analysis and Thermodynamic Optimization in Aircraft Development
,”
Exergy Int. J.
,
1
(
1
), pp.
14
24
.
29.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M. J.
,
1996
,
Thermal Design and Optimization
,
Wiley
,
New York
.
30.
Kotas
,
T. J.
,
1995
,
The Exergy Method of Thermal Plant Analysis
, Reprinted. with corrections,
Krieger Pub
,
Malabar, FL
.
31.
Yildiz
,
I.
,
Caliskan
,
H.
, and
Mori
,
K.
,
2020
, “
Exergy Analysis and Nanoparticle Assessment of Cooking Oil Biodiesel and Standard Diesel Fueled Internal Combustion Engine
,”
Energy Environ.
,
31
(
8
), pp.
1303
1317
.
32.
Rakopoulos
,
C.
, and
Giakoumis
,
E.
,
2006
, “
Second-Law Analyses Applied to Internal Combustion Engines Operation
,”
Prog. Energy Combust. Sci.
,
32
(
1
), pp.
2
47
.
33.
Aydin
,
H.
,
Turan
,
O.
,
Karakoc
,
T. H.
, and
Midilli
,
A.
,
2012
, “
Component-Based Exergetic Measures of an Experimental Turboprop/Turboshaft Engine for Propeller Aircrafts and Helicopters
,”
Int. J. Exergy
,
11
(
3
), p.
322
.
34.
Balli
,
O.
,
2019
, “
A Parametric Study of Hydrogen Fuel Effects on Exergetic, Exergoeconomic and Exergoenvironmental Cost Performances of an Aircraft Turbojet Engine
,”
Int. J. Turbo Jet Eng.
, published ahead of print.
35.
Balli
,
O.
, and
Hepbasli
,
A.
,
2013
, “
Energetic and Exergetic Analyses of T56 Turboprop Engine
,”
Energy Convers. Manage.
,
73
(
9
), pp.
106
120
.
36.
Coban
,
K.
,
Şöhret
,
Y.
,
Colpan
,
C. O.
, and
Karakoç
,
T. H.
,
2017
, “
Exergetic and Exergoeconomic Assessment of a Small-Scale Turbojet Fueled With Biodiesel
,”
Energy
,
140
(
24
), pp.
1358
1367
.
37.
Yildiz
,
I.
,
Caliskan
,
H.
, and
Mori
,
K.
,
2020
, “
Energy, Exergy and Environmental Assessments of Biodiesel and Diesel Fuels for an Internal Combustion Engine Using Silicon Carbide Particulate Filter
,”
J. Therm. Anal. Calorim.
, published ahead of print.
38.
Aydın
,
H.
,
Turan
,
O.
,
Karakoc
,
T. H.
, and
Midilli
,
A.
,
2014
, “
Sustainability Assessment of PW6000 Turbofan Engine: An Exergetic Approach
,”
Int. J. Exergy
,
14
(
3
), p.
388
.
39.
Tuzcu
,
H.
,
Sohret
,
Y.
, and
Caliskan
,
H.
,
2020
, “
Energy, Environment and Enviroeconomic Analyses and Assessments of the Turbofan Engine Used in Aviation Industry
,”
Environ. Prog. Sustainable Energy.
,
40
(
3
), p.
e13547
.
40.
Turan
,
O.
, and
Aydin
,
H.
,
2016
, “
Exergy-Based Sustainability Analysis of a Low-Bypass Turbofan Engine: A Case Study for JT8D
,”
Energy Procedia
,
95
(
11
), pp.
499
506
.
41.
Tai
,
V. C.
,
See
,
P. C.
, and
Mares
,
C.
,
2014
, “
Optimisation of Energy and Exergy of Turbofan Engines Using Genetic Algorithms
,”
Int. J. Sustainable Aviat.
,
1
(
1
), p.
25
.
42.
Şöhret
,
Y.
,
Dinç
,
A.
, and
Karakoç
,
T. H.
,
2015
, “
Exergy Analysis of a Turbofan Engine for an Unmanned Aerial Vehicle During a Surveillance Mission
,”
Energy
,
93
(
18
), pp.
716
729
.
43.
Yildiz
,
I.
, and
Caliskan
,
H.
,
2020
, “
Energy and Exergy Prices of the Jet Kerosene Fuel With Carbon Emission Equivalents for the Air Transport Sector in Turkey
,”
Aircr. Eng. Aerosp. Technol.
, published ahead of print.
44.
Caliskan
,
H.
, and
Mori
,
K.
,
2017
, “
Thermodynamic, Environmental and Economic Effects of Diesel and Biodiesel Fuels on Exhaust Emissions and Nano-particles of a Diesel Engine
,”
Transp. Res. Part D Transp. Environ.
,
56
(
8
), pp.
203
221
.
45.
Turan
,
O.
,
2012
, “
Exergetic Effects of Some Design Parameters on the Small Turbojet Engine for Unmanned Air Vehicle Applications
,”
Energy
,
46
(
1
), pp.
51
61
.
46.
Şöhret
,
Y.
,
2018
, “
A Comprehensive Approach to Understanding Irreversibility in a Turbojet
,”
Propuls. Power Res.
,
7
(
2
), pp.
129
137
.
47.
Balli
,
O.
,
Sohret
,
Y.
, and
Karakoc
,
H. T.
,
2018
, “
The Effects of Hydrogen Fuel Usage on the Exergetic Performance of a Turbojet Engine
,”
Int. J. Hydrogen Energy
,
43
(
23
), pp.
10848
10858
.
48.
Şöhret
,
Y.
,
2018
, “
Exergo-Sustainability Analysis and Ecological Function of a Simple Gas Turbine Aero-Engine
,”
J. Therm. Eng.
,
4
(
4
), pp.
2083
2095
.
You do not currently have access to this content.