Abstract

Due to increased penetration of low-inertia resources into the electric grid, challenges are increasing for maintaining wide-area system stability. Grid stability assessment requires a faithful representation of the multiple-physics interaction at the system level, and timescales of interaction varying in orders of magnitude, from microseconds to seconds to several minutes. Along with the simulation-based techniques, hardware-in-the-loop (HIL), controller HIL, and power HIL techniques have been developed to better understand the emergent behavior of the system with emerging technologies. US National Laboratories have played a vital role in research and development to understand the behavior of individual technologies and devices integrated to the electric grid. Each national laboratory forwards a technological and strategic initiative tied core and enabling capabilities. Due to strategic, efficiency, and economic reasons, not all the labs have assets to conduct research on all technologies concomitantly, so it becomes crucial to integrate the labs across geographies to understand the interplay of different technologies together at the system level. This approach avoids duplication of the assets at different lab facilities and helps understand the integrated system behavior of various technologies representative of actual grid conditions by connecting multiple national labs. This paper talks about techniques of connecting three national laboratories to enable co-emulation of electrical–mechanical–thermal characteristics of devices and systems. Such an approach can be used to understand the dynamic and transient interaction of multi-physics in a system level, at-scale emulation using real-time simulation tools and techniques.

References

1.
Panwar
,
M.
,
Mohanpurkar
,
M.
,
Osorio
,
J. D.
, and
Hovsapian
,
R.
,
2015
, “
Significance of Dynamic and Transient Analysis in the Design and Operation of Hybrid Energy Systems
,”
Proceedings of the 9th International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies
,
Charlotte, NC
,
Feb. 22–26.
https://www.osti.gov/biblio/1179379/
2.
Ackermann
,
T.
,
Prevost
,
T.
,
Vittal
,
V.
,
Roscoe
,
A. J.
,
Matevosyan
,
J.
, and
Miller
,
N.
,
2017
, “
Paving the Way: A Future Without Inertia is Closer Than You Think
,”
IEEE Power Energy Mag.
,
15
(
6
), pp.
61
69
. 10.1109/MPE.2017.2729138
3.
Kroposki
,
B.
,
Johnson
,
B.
,
Zhang
,
Y.
,
Gevorgian
,
V.
,
Denholm
,
P.
,
Hodge
,
B. M.
, and
Hannegan
,
B.
,
2017
, “
Achieving a 100% Renewable Grid: Operating Electric Power Systems With Extremely High Levels of Variable Renewable Energy
,”
IEEE Power Energy Mag.
,
15
(
2
), pp.
61
73
. 10.1109/MPE.2016.2637122
4.
Ulbig
,
A.
,
Borsche
,
T. S.
, and
Andersson
,
G.
,
2014
, “
Impact of Low Rotational Inertia on Power System Stability and Operation
,”
IFAC Proc.
,
47
(
3
), pp.
7290
7297
. 10.3182/20140824-6-ZA-1003.02615
5.
Tielens
,
P.
, and
Van Hertem
,
D.
,
2016
, “
The Relevance of Inertia in Power Systems
,”
Renew. Sustain. Energy Rev.
,
55
, pp.
999
1009
. 10.1016/j.rser.2015.11.016
6.
Undrill
,
J.
,
2018
, “
Primary Frequency Response and Control of Power System Frequency
,”
Lawrence Berkeley National Laboratory
,
LBNL-2001105
.
7.
Pouyan
,
P.
,
Chown
,
G.
,
Feltes
,
J.
,
Modau
,
F.
,
Sterpu
,
S.
,
Boyer
,
R.
,
Chan
,
K.
,
Hannett
,
L.
,
Leonard
,
D.
,
Lima
,
L. T. G.
,
Hofbauer
,
W.
,
Gerin-Lajoie
,
L.
,
Patterson
,
S.
,
Undrill
,
J.
, and
Langenbacher
,
F.
,
2013
, “
Dynamic Models for Turbine-Governors in Power System Studies
,”
IEEE Power & Energy Society
, Technical Report: PES-TR1.
8.
Muljadi
,
E.
,
Gevorgian
,
V.
,
Singh
,
M.
, and
Santoso
,
S.
,
2012
, “
Understanding Inertial and Frequency Response of Wind Power Plants
,”
IEEE Symposium on Power Electronics and Machines in Wind Applications
,
Denver, CO
,
July 16–18
, pp.
1
8
.
9.
Fronk
,
B. M.
,
Neal
,
R.
, and
Garimella
,
S.
,
2010
, “
Evolution of the Transition to a World Driven by Renewable Energy
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), p.
021009
. 10.1115/1.4001574
10.
Koytsoumpa
,
E. I.
,
Bergins
,
C.
,
Buddenberg
,
T.
,
Wu
,
S.
,
Sigurbjornsson
,
O.
,
Tran
,
K. C.
, and
Kakaras
,
E.
,
2016
, “
The Challenge of Energy Storage in Europe: Focus on Power to Fuel
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042002
. 10.1115/1.4032544
11.
Greenwood
,
D. M.
,
Lim
,
K. Y.
,
Patsios
,
C.
,
Lyons
,
P. F.
,
Lim
,
Y. S.
, and
Taylor
,
P. C.
,
2017
, “
Frequency Response Services Designed for Energy Storage
,”
Appl. Energy
,
203
, pp.
115
127
. 10.1016/j.apenergy.2017.06.046
12.
Haehne
,
K.
,
Schmietendorf
,
K.
,
Tamrakar
,
S.
,
Peinke
,
J.
, and
Kettemann
,
S.
,
2019
, “
Propagation of Wind Power Induced Fluctuations in Power Grids
,”
Phys. Rev. E
,
99
(
5
), p.
050301
. https://link.aps.org/doi/10.1103/PhysRevE.99.050301
13.
Nesti
,
T.
,
Zocca
,
A.
, and
Zwart
,
B.
,
2018
, “
Emergent Failures and Cascades in Power Grids: A Statistical Physics Perspective
,”
Phys. Rev. Lett.
,
120
(
25
), p.
258301
. 10.1103/PhysRevLett.120.258301
14.
Ueckerdt
,
F.
,
Brecha
,
R.
, and
Luderer
,
G.
,
2015
, “
Analyzing Major Challenges of Wind and Solar Variability in Power Systems
,”
Renew. Energy
,
81
, pp.
1
10
. 10.1016/j.renene.2015.03.002
15.
Gils
,
H. G.
,
Scholz
,
Y.
,
Pregger
,
T.
,
Luca de Tena
,
F.
, and
Heide
,
D.
,
2017
, “
Integrated Modelling of Variable Renewable Energy-Based Power Supply in Europe
,”
Energy
,
123
, pp.
173
188
. 10.1016/j.energy.2017.01.115
16.
Anvari
,
M.
,
Lohmann
,
G.
,
Wächter
,
M.
,
Milan
,
P.
,
Lorenz
,
E.
,
Heinemann
,
F.
,
Tabar
,
M. R. R.
, and
Peinke
,
J.
,
2016
, “
Short Term Fluctuations of Wind and Solar Power Systems
,”
New J. Phys.
,
18
(
6
), p.
063027
. 10.1088/1367-2630/18/6/063027
17.
Delille
,
G.
,
Francois
,
B.
, and
Malarange
,
G.
,
2012
, “
Dynamic Frequency Control Support by Energy Storage to Reduce the Impact of Wind and Solar Generation on Isolated Power System’s Inertia
,”
IEEE Trans. Sustain. Energy
,
3
(
4
), pp.
931
939
. 10.1109/TSTE.2012.2205025
18.
Taher
,
H.
,
Olmi
,
S.
, and
Scholl
,
E.
,
2019
, “
Enhancing power grid synchronization and stability through time-delayed feedback control
,”
Phys. Rev. E
,
100
(
6
), p.
062306
. https://link.aps.org/doi/10.1103/PhysRevE.100.062306
19.
Li
,
X.
,
Hui
,
D.
, and
Lai
,
X.
,
2013
, “
Battery Energy Storage Station (BESS)-Based Smoothing Control of Photovoltaic (PV) and Wind Power Generation Fluctuations
,”
IEEE Trans. Sustain. Energy
,
4
(
2
), pp.
464
473
. 10.1109/TSTE.2013.2247428
20.
Benato
,
A.
, and
Stoppato
,
A.
,
2018
, “
Energy and Cost Analysis of a New Packed Bed Pumped Thermal Electricity Storage Unit
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020904
. 10.1115/1.4038197
21.
Hajiaghasi
,
S.
,
Salemnia
,
A.
, and
Hamzeh
,
M.
,
2019
, “
Hybrid Energy Storage System for Microgrids Applications: A Review
,”
J. Energy Storage
,
21
, pp.
543
570
. 10.1016/j.est.2018.12.017
22.
Masaki
,
M. S.
,
Zhang
,
L.
, and
Xia
,
X.
,
2019
, “
A Hierarchical Predictive Control for Supercapacitor-Retrofitted Grid-Connected Hybrid Renewable Systems
,”
Appl. Energy
,
242
, pp.
393
402
. 10.1016/j.apenergy.2019.03.049
23.
Tummuru
,
N. R.
,
Mishra
,
M. K.
, and
Srinivas
,
S.
,
2015
, “
Dynamic Energy Management of Renewable Grid Integrated Hybrid Energy Storage System
,”
IEEE Trans. Ind. Electron.
,
62
(
12
), pp.
7728
7737
. 10.1109/TIE.2015.2455063
24.
Zhang
,
L.
,
Tang
,
Y.
,
Yang
,
S.
, and
Gao
,
F.
,
2019
, “
Decoupled Power Control for a Modular-Multilevel-Converter-Based Hybrid AC–DC Grid Integrated With Hybrid Energy Storage
,”
IEEE Trans. Ind. Electron.
,
66
(
4
), pp.
2926
2934
. 10.1109/TIE.2018.2842795
25.
Chia
,
Y. Y.
,
Lee
,
L. H.
,
Shafiabady
,
N.
, and
Isa
,
D.
,
2015
, “
A Load Predictive Energy Management System for Supercapacitor-Battery Hybrid Energy Storage System in Solar Application Using the Support Vector Machine
,”
Appl. Energy
,
137
, pp.
588
602
. 10.1016/j.apenergy.2014.09.026
26.
Khare
,
V.
,
Nema
,
S.
, and
Baredar
,
P.
,
2016
, “
Solar–Wind Hybrid Renewable Energy System: A Review
,”
Renew. Sustain. Energy Rev.
,
58
, pp.
23
33
. 10.1016/j.rser.2015.12.223
27.
Akram
,
U.
,
Khalid
,
M.
, and
Shafiq
,
S.
,
2018
, “
Optimal Sizing of a Wind/Solar/Battery Hybrid Grid-Connected Microgrid System
,”
IET Renew. Power Gener.
,
12
(
1
), pp.
72
80
. 10.1049/iet-rpg.2017.0010
28.
Sedaghati
,
R.
, and
Shakarami
,
M. R.
,
2019
, “
A Novel Control Strategy and Power Management of Hybrid PV/FC/SC/Battery Renewable Power System-Based Grid-Connected Microgrid
,”
Sustain. Cities Soc.
,
44
, pp.
830
843
. 10.1016/j.scs.2018.11.014
29.
Kamal
,
T.
,
Hassan
,
S. Z.
,
Li
,
H.
,
Mumtaz
,
S.
, and
Khan
,
L.
,
2016
, “
Energy Management and Control of Grid-Connected Wind/Fuel Cell/Battery Hybrid Renewable Energy System
,”
International Conference on Intelligent Systems Engineering (ICISE)
,
Islamabad
,
Jan. 15–17
, pp.
161
166
.
30.
Tajeddin
,
A.
, and
Roohi
,
E.
,
2019
, “
Designing a Reliable Wind Farm Through Hybridization With Biomass Energy
,”
Appl. Therm. Eng.
,
154
, pp.
171
179
. 10.1016/j.applthermaleng.2019.03.088
31.
Panwar
,
M.
,
Suryanarayanan
,
S.
, and
Chakraborty
,
S.
,
2014
, “
Steady-State Modeling and Simulation of a Distribution Feeder With Distributed Energy Resources in a Real-Time Digital Simulation Environment
,”
North American Power Symposium (NAPS)
,
Pullman, WA
,
Sept. 7–9
, pp.
1
6
.
32.
Meshram
,
S.
,
Agnihotri
,
G.
, and
Gupta
,
S.
,
2013
, “
Performance Analysis of Grid Integrated Hydro and Solar Based Hybrid Systems
,”
Adv. Power Elect.
,
2013
10.1155/2013/697049.
Article ID 697049
.
33.
Bhandari
,
B.
,
Poudel
,
S. R.
,
Lee
,
K. T.
, and
Ahn
,
S. H.
,
2014
, “
Mathematical Modeling of Hybrid Renewable Energy System: A Review on Small Hydro-Solar-Wind Power Generation
,”
Int. J. Precis. Eng. Man.
,
1
(
2
), pp.
157
173
. 10.1007/s40684-014-0021-4
34.
Anadon
,
L. D.
,
Chan
,
G.
,
Bin-Nun
,
A.
, and
Narayanamurti
,
V.
,
2016
, “
The Pressing Energy Innovation Challenge of the US National Laboratories
,”
Nat. Energy
,
1
(
10
), p.
16117
. 10.1038/nenergy.2016.117
35.
Bélanger
,
J.
,
Venne
,
P.
, and
Paquin
,
J. N.
,
2010
, “
The What, Where, and Why of Real-Time Simulation
,”
Planet RT, 37-49
.
36.
Mudunkotuwa
,
K.
,
Filizadeh
,
S.
, and
Annakkage
,
U.
,
2016
, “
Development of a Hybrid Simulator by Interfacing Dynamic Phasors With Electromagnetic Transient Simulation
,”
IET Gener. Transm. Distrib.
,
11
(
12
), pp.
2991
3001
. 10.1049/iet-gtd.2016.1616
37.
Lauss
,
G. F.
,
Faruque
,
M. O.
,
Schoder
,
K.
,
Dufour
,
C.
,
Viehweider
,
A.
, and
Langston
,
J.
,
2016
, “
Characteristics and Design of Power Hardware-in-the-Loop Simulations for Electrical Power Systems
,”
IEEE Trans. Ind. Electron.
,
63
(
1
), pp.
406
417
. 10.1109/TIE.2015.2464308
38.
Chiocchio
,
T.
,
Leonard
,
R.
,
Work
,
Y.
,
Fang
,
R.
,
Steurer
,
M.
,
Monti
,
A.
,
Khan
,
J.
,
Ordonez
,
J. C.
,
Sloderbeck
,
M.
, and
Woodruff
,
S. L.
,
2007
, “
A Co-Simulation Approach for Real-Time Transient Analysis of Electro-Thermal System Interactions on Board of Future All-Electric Ships
,”
Proceedings of the 2007 Summer Computer Simulation Conference (SCSC ‘07)
,
San Diego, CA
,
July 15–18
,
Article 6
, pp.
1
7
.
39.
Bacic
,
M.
,
2005
, “
On Hardware-in-the-Loop Simulation
,”
Proceedings of the 44th IEEE Conference on Decision and Control
,
Seville, Spain
,
Dec. 12–15
, pp.
3194
3198
.
40.
Edrington
,
C. S.
,
Steurer
,
M.
,
Langston
,
J.
,
El-Mezyani
,
T.
, and
Schoder
,
K.
,
2015
, “
Role of Power Hardware in the Loop in Modeling and Simulation for Experimentation in Power and Energy Systems
,”
Proc. IEEE
,
103
(
12
), pp.
2401
2409
. 10.1109/JPROC.2015.2460676
41.
Kotsampopoulos
,
P.
,
Lagos
,
D.
,
Hatziargyriou
,
N.
,
Faruque
,
M. O.
,
Lauss
,
G.
,
Nzimako
,
O.
,
Forsyth
,
P.
,
Steurer
,
M.
,
Ponci
,
F.
,
Monti
,
A.
,
Dinavahi
,
V.
, and
Strunz
,
K.
,
2018
, “
A Benchmark System for Hardware-in-the-Loop Testing of Distributed Energy Resources
,”
IEEE Power Energy Technol. Syst. J.
,
5
(
3
), pp.
94
103
. 10.1109/JPETS.2018.2861559
42.
Limpaecher
,
E.
,
Salcedo
,
R.
,
Corbett
,
E.
,
Manson
,
S.
,
Nayak
,
B.
, and
Allen
,
W.
,
2017
, “
Lessons Learned From Hardware-in-the-Loop Testing of Microgrid Control Systems
,”
Grid of the Future Symposium
,
Cleveland, OH
,
Oct. 22–25.
https://cdn.selinc.com/assets/Literature/Publications/Technical%20Papers/6807_LessonsLearned_SM_20170810_Web.pdf?v=20171024-224121
43.
Solar calendars
. “
The Nevada Power Clark Station—National Renewable Energy Laboratory (NREL)
,” http://www.nrel.gov/midc/npcs/. Accessed February 4, 2020.
44.
Osorio
,
J. D.
,
2016
, “
Modeling and Optimization of a Concentrated Solar Supercritical CO2 Power Plant
,”
Dissertation
,
Florida State University
.
45.
Osorio
,
J. D.
,
Hovsapian
,
R.
, and
Ordonez
,
J. C.
,
2016
, “
Effect of Multi-Tank Thermal Energy Storage, Recuperator Effectiveness, and Solar Receiver Conductance on the Performance of a Concentrated Solar Supercritical CO2-Based Power Plant Operating Under Different Seasonal Conditions
,”
Energy
,
115
(
1
), pp.
353
368
. 10.1016/j.energy.2016.08.074
46.
Osorio
,
J. D.
,
Hovsapian
,
R.
, and
Ordonez
,
J. C.
,
2016
, “
Dynamic Analysis of Concentrated Solar Supercritical CO2-Based Power Generation Closed-Loop Cycle
,”
Appl. Therm. Eng.
,
93
, pp.
920
934
. 10.1016/j.applthermaleng.2015.10.039
47.
Renewable Energy Portfolio
. “
Arizona Power Service Company
”,
Jan.
2013
.
48.
Liu
,
R.
,
Mohanpurkar
,
M.
,
Panwar
,
M.
,
Hovsapian
,
R.
,
Srivastava
,
A.
, and
Suryanarayanan
,
S.
,
2017
, “
Geographically Distributed Real-Time Digital Simulations Using Linear Prediction
,”
Int. J. Elect. Power Energy Syst.
,
84
, pp.
308
317
. 10.1016/j.ijepes.2016.06.005
49.
Mohanpurkar
,
M.
,
Panwar
,
M.
,
Chanda
,
S.
,
Stevic
,
M.
,
Hovsapian
,
R.
,
Gevorgian
,
V.
,
Suryanarayanan
,
S.
, and
Monti
,
A.
,
2016
,
Cyber-Physical-Social Systems and Constructs in Electric Power Engineering
,
IET Digital Library
, pp.
451
486
. 10.1049/pbpo081e_ch17
50.
Monti
,
A.
,
Stevic
,
M.
,
Vogel
,
S.
,
De Doncker
,
R. W.
,
Bompard
,
E.
,
Estebsari
,
A.
,
Profumo
,
F.
,
Hovsapian
,
R.
,
Mohanpurkar
,
M.
,
Flicker
,
J. D.
,
Gevorgian
,
V.
,
Suryanarayanan
,
S.
,
Srivastava
,
A.
, and
Benigni
,
A.
,
2018
, “
A Global Real-Time Superlab: Enabling High Penetration of Power Electronics in the Electric Grid
,”
IEEE Power Electron. Mag.
,
5
(
3
), pp.
35
44
. 10.1109/MPEL.2018.2850698
51.
Mohanpurkar
,
M.
,
Luo
,
Y.
,
Terlip
,
D.
,
Dias
,
F.
,
Harrison
,
K.
,
Eichman
,
J.
,
Hovsapian
,
R.
, and
Kurtz
,
J.
,
2017
, “
Electrolyzers Enhancing Flexibility in Electric Grids
,”
Energies
,
10
(
11
), p.
1836
. 10.3390/en10111836
52.
Hovsapian
,
R.
,
2018
, “
Dynamic Modeling and Validation of Electrolyzers in Real-Time Grid Simulation
,”
DOE Fuel Cell Technologies Office Annual Merit Review, 2018
,
Washington DC
. https://www.hydrogen.energy.gov/pdfs/review18/tv031_hovsapian_2018_o.pdf.
You do not currently have access to this content.