Abstract

Well production rates decline quickly in the tight reservoirs, and enhanced oil recovery (EOR) is needed to increase productivity. Conventional flooding from adjacent wells is inefficient in the tight formations, and Huff-n-Puff also fails to achieve the expected productivity. This paper investigates the feasibility of the inter-fracture injection and production (IFIP) method to increase oil production rates of horizontal wells. Three multi-fractured horizontal wells (MFHWs) are included in a cluster well. The fractures with even and odd indexes are assigned to be injection fractures (IFs) and recovery fractures (RFs). The injection/production schedule includes synchronous inter-fracture injection and production (s-IFIP) and asynchronous inter-fracture injection and production (a-IFIP). The production performances of three MFHWs are compared by using four different recovery approaches based on numerical simulation. Although the number of RFs is reduced by about 50% for s-IFIP and a-IFIP, they achieve much higher oil rates than depletion and CO2 Huff-n-Puff. The sensitivity analysis is performed to investigate the impact of parameters on IFIP. The spacing between IFs and RFs, CO2 injection rates, and connectivity of fracture networks affect oil production significantly, followed by the length of RFs, well spacing among MFHWs, and the length of IFs. The suggested well completion scheme for the IFIP methods is presented. This work discusses the ability of the IFIP method in enhancing the oil production of MFHWs.

References

1.
Williams-Kovacs
,
J.
, and
Clarkson
,
C. R.
,
2014
, “
Analysis of Multi-Well and Stage-by-Stage Flowback From Multi-Fractured Horizontal Wells
,”
SPE/CSUR Unconventional Resources Conference—Canada
,
Calgary, Alberta, Canada
,
Sep. 30–Oct. 2
,
SPE-171591-MS
.
2.
Ogoke
,
V.
,
Schauerte
,
L.
, and
Bouchard
,
G.
,
2014
, “
Simultaneous Operations in Multi-Well Pad: A Cost Effective Way of Drilling Multi Wells Pad and Deliver 8 Fracs a Day
,”
SPE Annual Technical Conference and Exhibition
,
Amsterdam, The Netherlands
,
Oct. 27–29
,
SPE-170744-MS
.
3.
Kanfar
,
M. S.
,
Ghaderi
,
S. M.
,
Clarkson
,
C. R.
,
Reynolds
,
M. M.
, and
Hetherington
,
C.
,
2017
, “
A Modeling Study of EOR Potential for CO2 Huff-n-Puff in Tight Oil Reservoirs—Example From the Bakken Formation
,”
SPE Unconventional Resources Conference
,
Calgary, Alberta
,
Feb. 15–16
,
SPE-185026-MS
.
4.
Shelley
,
R.
,
Shah
,
K.
,
Davidson
,
B.
,
Sheludko
,
S.
, and
Nejad
,
A.
,
2017
, “
Improving Hydraulic Fracture Design; A Key to Achieving a Higher Level of Multi-Fractured Horizontal Well Performance
,”
SPE Hydraulic Fracturing Technology Conference and Exhibition
,
The Woodlands, TX
,
Jan. 24–26
,
SPE-184816-MS
.
5.
Li
,
Y.
,
Zuo
,
L.
,
Yu
,
W.
, and
Chen
,
Y.
,
2018
, “
A Fully Three Dimensional Semianalytical Model for Shale Gas Reservoirs With Hydraulic Fractures
,”
Energies
,
11
(
2
), p.
436
. 10.3390/en11020436
6.
Sesetty
,
V.
, and
Ghassemi
,
A.
,
2015
, “
A Numerical Study of Sequential and Simultaneous Hydraulic Fracturing in Single and Multi-Lateral Horizontal Wells
,”
J. Petrol. Sci. Eng.
,
132
, pp.
65
76
. 10.1016/j.petrol.2015.04.020
7.
Bao
,
A.
,
Hazlett
,
R. D.
, and
Babu
,
D. K.
,
2017
, “
A Discrete, Arbitrarily Oriented 3D Plane-Source Analytical Solution to the Diffusivity Equation for Modeling Reservoir Fluid Flow
,”
SPE J.
,
22
(
5
), pp.
1
609
. 10.2118/185180-pa
8.
Sun
,
Z.
,
Espinoza
,
D. N.
, and
Balhoff
,
M. T.
,
2018
, “
Reservoir Rock Chemo-Mechanical Alteration Quantified by Triaxial Tests and Implications to Fracture Reactivation
,”
Int. J. Rock Mech. Min. Sci.
,
106
, pp.
250
258
. 10.1016/j.ijrmms.2018.04.004
9.
Shrivastava
,
K.
, and
Sharma
,
M. M.
,
2018
, “
Mechanisms for the Formation of Complex Fracture Networks in Naturally Fractured Rocks
,”
SPE Hydraulic Fracturing Technology Conference and Exhibition
,
The Woodlands, TX
,
Jan. 23–25
,
SPE-189864-MS
.
10.
Niu
,
G.
,
Sun
,
J.
,
Parsegov
,
S.
, and
Schechter
,
D.
,
2017
, “
Integration of Core Analysis, Pumping Schedule and Microseismicity to Reduce Uncertainties of Production Performance of Complex Fracture Networks for Multi-Stage Hydraulically Fractured Reservoirs
,”
SPE Eastern Regional Meeting
,
Lexington
,
Oct. 4–6
,
SPE-187524-MS
.
11.
Gaswirth
,
S. B.
, and
Marra
,
K. R.
,
2015
, “
U.S. Geological Survey 2013 Assessment of Undiscovered Resources in the Bakken and Three Forks Formations of the U.S. Williston Basin Province
,”
AAPG Bul.
,
99
(
4
), pp.
639
660
. 10.1306/08131414051
12.
Rystad Energy
,
2014
,
Shale Companies Have Proven More Efficient But Not More Productive
,
Rystad Energy
.
13.
Wang
,
Z.
,
Malone
,
A.
, and
King
,
M. J.
,
2018
, “
Quantitative Production Analysis and EUR Prediction From Unconventional Reservoirs Using a Data-Driven Drainage Volume Formulation
,”
EAGE European Conference on the Mathematics of Oil Recovery
,
Barcelona, Spain
,
Sept. 3–6
.
14.
Wachtmeister
,
H.
,
Lund
,
L.
,
Aleklett
,
K.
, and
Höök
,
M.
,
2017
, “
Production Decline Curves of Tight Oil Wells in Eagle Ford Shale
,”
Nat. Resour. Res.
,
26
(
3
), pp.
365
377
. 10.1007/s11053-016-9323-2
15.
Tang
,
J.
,
Ehlig-Economides
,
C.
,
Li
,
J.
,
Guo
,
X.
,
Wu
,
K.
,
Mu
,
L.
,
Tang
,
M.
, and
Du
,
X.
,
2018
, “
Investigation of Multiple Hydraulic Fracture Propagation for Low-Pressure Tight Sandstone Reservoirs in Northern Ordos Basin of Changqing Oilfield, China
,”
SPE International Hydraulic Fracturing Technology Conference and Exhibition
,
Muscat, Oman
,
Oct. 16–18
,
SPE-191454-18IHFT-MS
.
16.
Qin
,
J.
,
Cheng
,
S.
,
He
,
Y.
,
Wang
,
Y.
,
Feng
,
D.
,
Li
,
D.
, and
Yu
,
H.
,
2018
, “
An Innovative Model to Evaluate Fracture Closure of Multi-Fractured Horizontal Well in Tight Gas Reservoir Based on Bottom-Hole Pressure
,”
J. Nat. Gas Sci. Eng.
,
57
, pp.
295
304
. 10.1016/j.jngse.2018.07.007
17.
He
,
Y.
,
Cheng
,
S.
,
Li
,
S.
,
Huang
,
Y.
,
Qin
,
J.
,
Hu
,
L.
, and
Yu
,
H.
,
2017
, “
A Semianalytical Methodology to Diagnose the Locations of Underperforming Hydraulic Fractures Through Pressure-Transient Analysis in Tight Gas Reservoir
,”
SPE J.
,
22
(
3
), pp.
924
939
. 10.2118/185166-PA
18.
Qin
,
J.
,
Cheng
,
S.
,
He
,
Y.
,
Wang
,
Y.
,
Feng
,
D.
,
Qin
,
G.
, and
Yu
,
H.
,
2018
, “
A Novel Well-Testing Model to Analyze Production Distribution of Multi-Stage Fractured Horizontal Well
,”
J. Nat. Gas Sci. Eng.
,
59
, pp.
237
249
. 10.1016/j.jngse.2018.09.004
19.
Jiang
,
J.
,
Rui
,
Z.
,
Hazlett
,
R.
, and
Lu,
J.
,
2019
, “
An Integrated Technical-Economic Model for Evaluating CO2 Enhanced Oil Recovery Development
,”
Appl. Energy
,
247
, pp.
190
211
. 10.1016/j.apenergy.2019.04.025
20.
Mohanty
,
K. K.
,
Chen
,
C.
, and
Balhoff
,
M. T.
,
2013
, “
Effect of Reservoir Heterogeneity on Improved Shale Oil Recovery by CO Huff-n-Puff
,”
SPE Unconventional Resources Conference
,
The Woodlands
,
Apr. 10–12
.
21.
Wang
,
Z.
,
Khanzode
,
A.
, and
Johns
,
R. T.
,
2016
, “
A Parametric Study of Reservoir Cooling for Enhanced Recovery by Carbon Dioxide Flooding
,”
SPE J.
,
21
(
3
), pp.
839
852
. 10.2118/170626-PA
22.
Du
,
F.
, and
Nojabaei
,
B.
,
2019
, “
A Review of Gas Injection in Shale Reservoirs: Enhanced Oil/Gas Recovery Approaches and Greenhouse Gas Control
,”
Energies
,
12
(
12
), p.
2355
. 10.3390/en12122355
23.
Yu
,
W.
,
Zhang
,
Y.
,
Varavei
,
A.
,
Sepehrnoori
,
K.
,
Zhang
,
T.
,
Wu
,
K.
, and
Miao
,
J.
,
2019
, “
Compositional Simulation of CO2 Huff’n’Puff in Eagle Ford Tight Oil Reservoirs With CO2 Molecular Diffusion, Nanopore Confinement, and Complex Natural Fractures
,”
SPE Reserv. Eval. Eng.
,
22
(
2
), pp.
492
508
. 10.2118/190325-pa
24.
Dombrowski
,
R. J.
,
Fonseca
,
E. R.
,
Karanikas
,
J. M.
,
Moya
,
M. J. F.
, and
Lamantia
,
B. C.
,
2015
, “
Fluid Injection in Light Tight Oil Reservoirs
,” U.S. Patent 9127544.
25.
Zhu
,
P.
,
Balhoff
,
M. T.
, and
Mohanty
,
K. K.
,
2017
, “
Compositional Modeling of Fracture-to-Fracture Miscible Gas Injection in an Oil-Rich Shale
,”
J. Petrol. Sci. Eng.
,
152
, pp.
628
638
. 10.1016/j.petrol.2017.01.031
26.
Singh
,
H.
, and
Cai
,
J.
,
2018
, “
Screening Improved Recovery Methods in Tight-Oil Formations by Injecting and Producing Through Fractures
,”
Int. J. Heat Mass Transfer
,
116
, pp.
977
993
. 10.1016/j.ijheatmasstransfer.2017.09.071
27.
Yu
,
H.
,
Yang
,
Z.
,
Luo
,
L.
,
Liu
,
J.
,
Cheng
,
S.
,
Qu
,
X.
,
Lei
,
Q.
, and
Lu
,
J.
,
2019
, “
Application of Cumulative-In-Situ-Injection-Production Technology to Supplement Hydrocarbon Recovery Among Fractured Tight Oil Reservoirs: A Case Study in Changqing Oilfield, China
,”
Fuel
,
242
, pp.
804
818
. 10.1016/j.fuel.2018.12.121
28.
Cheng
,
S.
,
Wang
,
Y.
,
Lang
,
H.
,
Yu
,
H.
,
Zhu
,
C.
,
Yang
,
B.
,
Zhang
,
H.
, and
Sun
,
Z.
,
2017
, “
Feasibility of Inter-Fracture Injection and Production for the Same Multistage Fractured Horizontal Well in Tight Oil Reservoir
,”
Acta Petrolei Sinica
,
38
(
12
), pp.
1411
1419
.
29.
Fiallos
,
M. X.
,
Yu
,
W.
,
Ganjdanesh
,
R.
,
Kerr
,
E.
,
Sepehrnoori
,
K.
,
Miao
,
J.
, and
Ambrose
,
R.
,
2019
, “
Modeling Interwell Interference Due to Complex Fracture Hits in Eagle Ford Using EDFM
,”
International Petroleum Technology Conference
,
Beijing, China
,
Mar. 26–28
.
30.
Tian
,
C.
, and
Horne
,
R. N.
,
2015
, “
Machine Learning Applied to Multiwell Test Analysis and Flow Rate Reconstruction
,”
SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Sept. 28–30
, SPE-175059-MS.
31.
Qin
,
J.
,
Cheng
,
S.
,
Li
,
P.
,
He
,
Y.
,
Lu
,
X.
, and
Yu
,
H.
,
2019
, “
Interference Well-Test Model for Vertical Well With Double-Segment Fracture in a Multi-Well System
,”
J. Petrol. Sci. Eng.
,
183
, p.
106412
. 10.1016/j.petrol.2019.106412
32.
Tang
,
H.
,
Yan
,
B.
,
Chai
,
Z.
,
Zuo
,
L.
,
Killough
,
J.
, and
Sun
,
Z.
,
2018
, “
Analyzing the Well Interference Phenomenon in Eagle Ford Shale—Austin Chalk Production System With a Comprehensive Compositional Reservoir Model
,”
SPE Reserv. Eval. Eng.
,
22
(
3
), pp.
827
841
. 10.2118/191381-pa
33.
He
,
Y.
,
Cheng
,
S.
,
Qin
,
J.
,
Chai
,
Z.
,
Wang
,
Y.
,
Patil
,
S.
,
Li
,
M.
, and
Yu
,
H.
,
2018
, “
Analytical Interference Testing Analysis of Multi-Segment Horizontal Well
,”
J. Petrol. Sci. Eng.
,
171
, pp.
919
927
. 10.1016/j.petrol.2018.08.019
34.
Guo
,
X.
,
Wu
,
K.
,
Killough
,
J.
, and
Tang
,
J.
,
2019
, “
Understanding the Mechanism of Interwell Fracturing Interference With Reservoir/Geomechanics/Fracturing Modeling in Eagle Ford Shale
,”
SPE Reserv. Eval. Eng.
,
22
(
3
), pp.
842
860
. 10.2118/194493-pa
35.
He
,
Y.
,
Cheng
,
S.
,
Qin
,
J.
,
Chai
,
Z.
,
Wang
,
Y.
,
Yu
,
H.
, and
Killough
,
J.
,
2019
, “
Interference Testing Model of Multiply Fractured Horizontal Well With Multiple Injection Wells
,”
J. Petrol. Sci. Eng.
,
176
, pp.
1106
1120
. 10.1016/j.petrol.2019.02.025
36.
Warren
,
J. E.
, and
Root
,
P. J.
,
1963
, “
The Behavior of Naturally Fractured Reservoirs
,”
SPE J.
,
3
(
3
), pp.
245
255
.
37.
Hinkley
,
R.
,
Gu
,
Z.
,
Wong
,
T.
, and
Camilleri
,
D.
,
2013
, “
Multi-Porosity Simulation of Unconventional Reservoirs
,”
SPE Unconventional Resources Conference
,
Alberta
,
Nov. 5–7
,
SPE-167146-MS
.
38.
Wu
,
Y.-S.
, and
Pruess
,
K.
,
1988
, “
A Multiple-Porosity Method for Simulation of Naturally Fractured Petroleum Reservoirs
,”
SPE Reservoir Engineering
,
3
(
1
), pp.
327
336
.
39.
Lee
,
S. H.
,
Jensen
,
C. L.
, and
Lough
,
M. F.
,
2000
, “
Efficient Finite-Difference Model for Flow in a Reservoir With Multiple Length-Scale Fractures
,”
SPE J.
,
5
(
3
), pp.
268
275
. 10.2118/65095-PA
40.
Li
,
L.
, and
Lee
,
S. H.
,
2008
, “
Efficient Field-Scale Simulation of Black Oil in a Naturally Fractured Reservoir Through Discrete Fracture Networks and Homogenized Media
,”
SPE Reserv. Eval. Eng.
,
11
(
4
), pp.
750
758
. 10.2118/103901-PA
41.
Hui
,
M.-H.
,
Dufour
,
G.
,
Vitel
,
S.
,
Muron
,
P.
,
Tavakoli
,
R.
,
Rousset
,
M.
,
Rey
,
A.
, and
Mallison
,
B.
,
2019
, “
A Robust Embedded Discrete Fracture Modeling Workflow for Simulating Complex Processes in Field-Scale Fractured Reservoirs
,”
SPE Reservoir Simulation Conference
,
Galveston, TX
,
Apr. 10–11
,
SPE-193827-MS
.
42.
Chai
,
Z.
,
Yan
,
B.
,
Killough
,
J. E.
, and
Wang
,
Y.
,
2016
, “
Dynamic Embedded Discrete Fracture Multi-Continuum Model for the Simulation of Fractured Shale Reservoirs
,”
International Petroleum Technology Conference
,
Bangkok, Thailand
,
Nov. 14–16
,
IPTC-18887-MS
.
43.
Huang
,
J.
,
Jin
,
T.
,
Chai
,
Z.
,
Barrufet
,
M.
, and
Killough
,
J.
,
2019
, “
Compositional Simulation of Fractured Shale Reservoir With Distribution of Nanopores Using Coupled Multi-Porosity and EDFM Method
,”
J. Petrol. Sci. Eng.
,
179
, pp.
1078
1089
. 10.1016/j.petrol.2019.05.012
44.
Moinfar
,
A.
,
Varavei
,
A.
,
Sepehrnoori
,
K.
, and
Johns
,
R. T.
,
2014
, “
Development of an Efficient Embedded Discrete Fracture Model for 3D Compositional Reservoir Simulation in Fractured Reservoirs
,”
SPE J.
,
19
(
2
), pp.
289
303
. 10.2118/154246-PA
45.
Jiang
,
J.
,
Shao
,
Y.
, and
Younis
,
R. M.
,
2014
, “
Development of a Multi-Continuum Multi-Component Model for Enhanced Gas Recovery and CO2 Storage in Fractured Shale Gas Reservoirs
,”
SPE Improved Oil Recovery Symposium
,
Tulsa
,
Apr. 12–16
,
SPE-169114-MS
.
46.
Ding
,
D. Y.
,
Farah
,
N.
,
Bourbiaux
,
B.
,
Wu
,
Y.-S.
, and
Mestiri
,
I.
,
2017
, “
Simulation of Matrix-Fracture Interaction in Low-Permeability Fractured Unconventional Reservoirs
,”
SPE Reservoir Simulation Conference, Montgomery
,
TX
,
Feb. 20–22
,
SPE-182608-MS
.
47.
Ţene
,
M.
,
Bosma
,
S. B.
,
Al Kobaisi
,
M. S.
, and
Hajibeygi
,
H.
,
2017
, “
Projection-Based Embedded Discrete Fracture Model (pEDFM)
,”
Adv. Water Res.
,
105
, pp.
205
216
. 10.1016/j.advwatres.2017.05.009
48.
Chai
,
Z.
,
Tang
,
H.
,
He
,
Y.
,
Killough
,
J.
, and
Wang
,
Y.
,
2018
, “
Uncertainty Quantification of the Fracture Network With a Novel Fractured Reservoir Forward Model
,”
SPE Annual Technical Conference and Exhibition
,
Dallas
,
Sept. 24–26
,
SPE-191395-MS
.
You do not currently have access to this content.