Abstract

The supercritical carbon dioxide Brayton power cycle is getting commercially attractive for power generation due to its numerous advantages like zero water discharge, compactness, and low environmental emission and potential to reach high thermal efficiency. A typical recuperated closed cycle consists of three heat exchangers (main heat exchanger, cooler, and recuperator) and two turbomachinery (turbine and compressor). The cooler using ambient air for cooling is the focus of this study. The steady-state air cooler model is set up to study the effect of air cooler size on cycle efficiency. The effect of change in the ambient air temperature on the air cooler pinch point for different air cooler sizes is analyzed using the transient air cooler model. The simulation is set up for the design of the approximately 100 MWe cycle with an operating temperature of 700 °C and a pressure of 250 bar. Transient calculations are done using LMS AMESim. LMS AMESim is the Siemens PLM commercially available software. This work thus serves as a framework to develop a basis for the design of the air cooler in the power cycle as a function of transient operating conditions.

References

1.
Franco
,
A.
, and
Diaz Vazquez
,
A. R.
,
2006
, “
A Thermodynamic Based Approach for the Multicriteria Assessment of Energy Conversion Systems
,”
ASME J. Energ. Resour. Technol.
,
128
(
4
), pp.
346
351
. 10.1115/1.2358149
2.
Lemmon
,
E.
,
Huber
,
M.
, and
McLinden
,
M.
,
2007
, “
Reference Fluid Thermodynamic and Transport Properties–Refprop Version 8.0
”.
NIST standard reference database, 23
.
3.
Dostal
,
V.
,
Driscoll
,
M.
, and
Hejzlar
,
P.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,”
PhD thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
4.
Ahn
,
Y.
,
Bae
,
S. J.
,
Kim
,
M.
,
Cho
,
S. K.
,
Baik
,
S.
,
Lee
,
J. I.
, and
Cha
,
J. E.
,
2015
, “
Review of Supercritical CO2 Power Cycle Technology and Current Status of Research and Development
,”
Nuclear Eng. Technol.
,
47
(
6
), pp.
647
661
. 10.1016/j.net.2015.06.009
5.
Allam
,
R.
,
Martin
,
S.
,
Forrest
,
B.
,
Fetvedt
,
J.
,
Lu
,
X.
,
Freed
,
D.
,
Brown
,
J. G. W.
,
Sasaki
,
T.
,
Itoh
,
M.
, and
Manning
,
J.
,
2017
, “
Demonstration of the Allam Cycle: An Update on the Development Status of a High Efficiency Supercritical Carbon Dioxide Power Process Employing Full Carbon Capture
,”
Energy Procedia
,
114
(13th International Conference on Greenhouse Gas Control Technologies, GHGT-13, 14-18 November 2016, Lausanne, Switzerland), pp.
5948
5966
. 10.1016/j.egypro.2017.03.1731
6.
Bauer
,
M. L.
,
Vijaykumar
,
R.
,
Lausten
,
M.
, and
Stekli
,
J.
,
2016
, “
Pathways to Cost Competitive Concentrated Solar Power Incorporating Supercritical Carbon Dioxide Power Cycles
,”
The 5th International Symposium – Supercritical CO2 Power Cycles
,
San Antonio, TX
,
Mar. 28–31
, pp.
1
10
.
7.
Kazemifar
,
F.
, and
Kyritsis
,
D. C.
,
2014
, “
Near-Critical CO2 Flow Measurement and Visualization
,”
ASME J. Energ. Resour. Technol.
,
137
(
1
), p.
012002
.
8.
Jacob
,
F.
,
Rolt
,
A. M.
,
Sebastiampillai
,
J. M.
,
Sethi
,
V.
,
Belmonte
,
M.
, and
Cobas
,
P.
,
2017
, “
Performance of a Supercritical CO2 Bottoming Cycle for Aero Applications
,”
Appl. Sci.
,
7
(
3
), p.
255
. 10.3390/app7030255
9.
Sarkar
,
J.
,
2018
, “
A Novel Pinch Point Design Methodology Based Energy and Economic Analyses of Organic Rankine Cycle
,”
ASME J. Energ. Resour. Technol.
,
140
(
5
), p.
01
. 10.1115/1.4038963
10.
Iverson
,
B. D.
,
Conboy
,
T. M.
,
Pasch
,
J. J.
, and
Kruizenga
,
A. M.
,
2013
, “
Supercritical CO2 Brayton Cycles for Solar-Thermal Energy
,”
Appl. Energ.
,
111
, pp.
957
970
. 10.1016/j.apenergy.2013.06.020
11.
Njoku
,
H. O.
,
Egbuhuzor
,
L. C.
,
Eke
,
M. N.
,
Enibe
,
S. O.
, and
Akinlabi
,
E. A.
,
2019
, “
Combined Pinch and Exergy Evaluation for Fault Analysis in a Steam Power Plant Heat Exchanger Network
,”
ASME J. Energ. Resour. Technol.
,
141
(
12
), p.
122001
. 10.1115/1.4043746
12.
Baik
,
S.
,
Kim
,
S. G.
,
Bae
,
S. J.
,
Ahn
,
Y.
,
Lee
,
J.
, and
Lee
,
J. I.
,
2015
, “
Preliminary Experimental Study of Precooler in Supercritical CO2 Brayton Cycle
,”
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
Palais de Congrès in Montréal, Canada
,
June 15–19
,
American Society of Mechanical Engineers
, p.
V009T36A010
.
13.
Heo
,
J. Y.
,
Kim
,
M. S.
,
Baik
,
S.
,
Bae
,
S. J.
, and
Lee
,
J. I.
,
2017
, “
Thermodynamic Study of Supercritical CO2 Brayton Cycle Using an Isothermal Compressor
,”
Appl. Energ.
,
206
, pp.
1118
1130
. 10.1016/j.apenergy.2017.08.081
14.
Moisseytsev
,
A.
,
Lv
,
Q.
, and
Sienicki
,
J. J.
,
2017
, “
Heat Exchanger Options for Dry Air Cooling for the sCO2 Brayton Cycle
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
,
American Society of Mechanical Engineers
, p.
V009T38A006
.
15.
Ferrandi
,
C.
,
Iorizzo
,
F.
,
Mameli
,
M.
,
Zinna
,
S.
, and
Marengo
,
M.
,
2013
, “
Lumped Parameter Model of Sintered Heat Pipe: Transient Numerical Analysis and Validation
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
1280
1290
. 10.1016/j.applthermaleng.2012.07.022
16.
Lambruschini
,
F.
,
Liese
,
E.
,
Zitney
,
S. E.
, and
Traverso
,
A.
,
2016
, “
Dynamic Model of a 10 MW Supercritical CO2 Recompression Brayton Cycle
,”
ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
,
Seoul, South Korea
,
June 13–17
,
American Society of Mechanical Engineers
, p.
V009T36A004
.
You do not currently have access to this content.