Abstract

This study investigates performance-based design optimization for a Kaplan hydro turbine at a maximum water head of 2.6 m (8.5 ft), a micro-sized horizontal Kaplan turbine with 7.6 cm (3.0 in) diameter that has fixed blades featured to attain the optimum performance for such type and size of hydro turbines. The optimization process includes solving design problems and enhance design development by applying a multi-disciplinary design optimization (MDO) technique. Varying the geometrical parameters of the turbine, i.e., dimensions, number of blades, blade wrap angles, and different rotational speeds (500–3000 rpm), are the relevant proposed disciplines of this study. Two multi-simulation matrices were solved by using the high-performance computing (HPC) cluster of the University of Wisconsin-Milwaukee. The first matrix includes different number of the blades (3, 4, 5, 6, and 7 blades) over six different rotational speeds (500, 1000, 1500, 2000, 2500, and 3000 rpm), while the second matrix includes 121 possible combinations of blade wrap angles starting at 60–60 deg (hub-shroud) angle to 110–110 deg angle with 5 deg increment alternated at both sides, the hub and the shroud.

References

1.
Prasad
,
S.
,
2010
, “
Energy Efficiency, Sources and Sustainability
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), p.
020301
. 10.1115/1.4001684
2.
Wong
,
K. V.
,
2014
, “
Engineering Solutions to the Greenhouse Gases Generated by Hydroelectric Plants
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
024701
. 10.1115/1.4027260
3.
Derakhshan
,
S.
, and
Kasaeian
,
N.
,
2014
, “
Optimization, Numerical, and Experimental Study of a Propeller Pump as Turbine
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
012005
. 10.1115/1.4026312
4.
Abeykoon
,
C.
, and
Hantsch
,
T.
,
2017
, “
Design and Analysis of a Kaplan Turbine Runner Wheel
,”
Proceedings of the 3rd World Congress on Mechanical, Chemical, and Material Engineering
,
Rome, Italy
,
Paper No. HTFF 151
.
5.
Ujwala
,
M.
,
Chowdary
,
P. C. K.
, and
Naik
,
L. S.
,
2017
, “
Design and Analysis of Low Head, Lightweight Kaplan Turbine
,”
Int. Refereed J. Eng. Sci.
,
6
(
2
), pp.
17
25
. 10.9790/1813-0602011726
6.
Janjua
,
A. B.
,
Khalil
,
M. S.
, and
Saeed
,
M.
,
2013
, “
Blade Profile Optimization of Kaplan Turbine Using CFD Analysis
,”
Mehran Univ. Res. J. Eng. Technol.
,
32
(
4
), pp.
559
574
.
7.
Permana
,
E.
, and
Rudianto
,
Y.
,
2017
, “
Design and Velocity Distribution of Runner Blade of Kaplan Turbine Using CFD (Computer Fluid Dynamic) for Small Hydroelectric Power Plant
,”
IOP Conf. Ser.: Mater. Sci. and Eng.
,
180
(
1
), p.
012269
. 10.1088/1757-899X/180/1/012269
8.
Jost
,
D.
,
Skerlavaj
,
A.
, and
Lipej
,
A.
,
2014
, “
Improvement of Efficiency Prediction for a Kaplan Turbine With Advanced Turbulence Models
,”
J. Mech. Eng.
,
60
(
2
), pp.
124
134
. 10.5545/sv-jme.2013.1222
9.
Nan
,
D.
,
Shigemitsu
,
T.
,
Zhao
,
S.
,
Ikebuchi
,
T.
, and
Takeshima
,
Y.
,
2018
, “
Study on Performance of Contra-Rotating Small Hydro-Turbine With Thinner Blade and Longer Front Hub
,”
Renewable Energy
,
117
, pp.
184
192
. 10.1016/j.renene.2017.10.046
10.
Ranjan
,
R. K.
,
Alom
,
N.
,
Singh
,
J.
, and
Sarkar
,
B. K.
,
2019
, “
Performance Investigations of Cross Flow Hydro Turbine With the Variation of Blade and Nozzle Entry Arc Angle
,”
Energy Convers. Manage.
,
182
, pp.
41
50
. 10.1016/j.enconman.2018.12.075
11.
Hoghooghi
,
H.
,
Durali
,
M.
, and
Kashef
,
A.
,
2018
, “
A New Low-Cost Swirler for Axial Micro Hydro Turbines of Low Head Potential
,”
Renewable Energy
,
128
(
Part A
), pp.
375
390
. 10.1016/j.renene.2018.05.086
12.
Yildiz
,
V.
, and
Vrugt
,
J. A.
,
2019
, “
A Toolbox for the Optimal Design of Run-of-River Hydropower Plants
,”
Environ. Modell. Softw.
,
111
, pp.
134
152
. 10.1016/j.envsoft.2018.08.018
13.
Martins
,
J. R. R. A.
, and
Lambe
,
A. B.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAA J.
,
51
(
9
), pp.
2049
2075
. 10.2514/1.J051895
14.
Singh
,
S. K.
,
2017
, “
A Novel Concept for Non-Linear Multidisciplinary Aerodynamic Design Optimization
,”
Aerosp. Sci. Technol.
,
70
, pp.
626
635
. 10.1016/j.ast.2017.08.043
15.
Besnard
,
E.
,
Schmitz
,
A.
,
Hefazi
,
H.
, and
Shinde
,
R.
,
2007
, “
Constructive Neural Networks and Their Application to Ship Multidisciplinary Design Optimization
,”
J. Ship Res.
,
51
(
4
), pp.
297
312
. 10.1.1.541.4670
16.
Wang
,
L.
,
Xiong
,
C.
,
Hu
,
J.
,
Wang
,
X.
, and
Qiu
,
Z.
,
2018
, “
Sequential Multidisciplinary Design Optimization and Reliability Analysis Under Interval Uncertainty
,”
Aerosp. Sci. Technol.
,
80
, pp.
508
519
. 10.1016/j.ast.2018.07.029
17.
Yao
,
W.
,
Chen
,
X.
,
Luo
,
W.
,
van Tooren
,
M.
, and
Guo
,
J.
,
2011
, “
Review of Uncertainty-Based Multidisciplinary Design Optimization Methods for Aerospace Vehicles
,”
Prog. Aeros. Sci.
,
47
(
6
), pp.
450
479
. 10.1016/j.paerosci.2011.05.001
18.
Zhang
,
M.
,
Gou
,
W.
,
Li
,
L.
,
Wang
,
X.
, and
Yue
,
Z.
,
2016
, “
Multidisciplinary Design and Optimization of the Twin-Web Turbine Disk
,”
Struct. Multidiscipl. Optim.
,
53
(
5
), pp.
1129
1141
. 10.1007/s00158-015-1373-2
19.
Amano
,
R. S.
,
Abbas
,
A. I.
,
Qandil
,
M. D.
, and
Al-Haddad
,
M. R.
,
2019
, “
Multi-Disciplinary Design Optimization of a Horizontal Micro Kaplan Hydro Turbine
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 8: Microturbines, Turbochargers, and Small Turbomachines; Steam Turbines
,
Phoenix, AZ
,
June 17–21
.
20.
Yen
,
Y.
,
ElGammal
,
T.
,
Amano
,
R. S.
,
Millevote
,
J.
,
Mueller
,
R. J.
, and
Lequesne
,
B.
,
2016
, “
Numerical Optimization on Micro Kaplan Hydro Turbine System
,”
Fluids Engineering Division Summer Meeting
,
Washington, DC
,
July 10–14
, p.
V008T26A008
.
21.
Amano
,
R. S.
, and
Sunden
,
B.
,
2010
,
Computational Fluid Dynamics and Heat Transfer: Emerging Topics
, 1st ed.,
WIT Press
,
Billerica, MA
22.
Amano
,
R. S.
,
Qandil
,
M. D.
,
Elgammal
,
T.
,
Abbas
,
A. I.
, and
Abdelhadi
,
A. I.
,
2019
, “
Predicting the Cavitation Phenomena Over the Hydrofoil: CFD Validation
,”
AIAA Scitech 2019 Forum
,
San Diego, CA
,
Jan. 7–11
, p.
0783
.
23.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbulence Combust.
,
62
(
3
), pp.
183
200
. 10.1023/A:1009995426001
24.
Abbas
,
A. I.
,
Qandil
,
M. D.
,
Al-Haddad
,
M. R.
, and
Amano
,
R. S.
,
2019
, “
Performance Investigation of Very-Low-Head Kaplan Hydro-Turbines
,”
AIAA Scitech 2019 Forum
,
San Diego, CA
,
Paper No. 0241
.
25.
Abbas
,
A. I.
,
Qandil
,
M. D.
,
Al-Haddad
,
M. R.
,
Saravani
,
M. S.
, and
Amano
,
R. S.
,
2019
, “
Utilization of Hydro-Turbines in Wastewater Treatment Plants
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
062011
. 10.1115/1.4042969
26.
Abbas
,
A. I.
,
Amano
,
R. S.
,
Saravani
,
M. S.
,
Qandil
,
M. D.
, and
Sakamoto
,
T.
,
2019
, “
Optimization of Kaplan Hydroturbine at Very Low Head with Rim-Driven Generator
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
111204
. 10.1115/1.4043710
27.
Abbas
,
A. I.
, and
Amano
,
R. S.
,
2017
, “
Optimization of Intake and Draft Tubes of a Kaplan Micro Hydro-Turbine
,”
15th International Energy Conversion Engineering Conference, AIAA Propulsion and Energy Forum
,
Atlanta, GA
,
July 10–12
, pp.
4807
4820
.
28.
Abbas
,
A. I.
,
Sakamoto
,
T.
,
Saravani
,
M. S.
,
Amano
,
R. S.
,
Millevolte
,
J.
, and
Lequesne
,
B.
,
2017
, “
Optimization of Kaplan Hydro-Turbine at Very Low Head With Rim-Driven Generator
,”
ASME 2017 Power Conference Proceedings
,
Charlotte, NC
,
June 26–30
, Vol.
2
, p.
V002T09A017
.
29.
Bravo
,
L.
,
Wijeyakulasuriya
,
S.
,
Pomraning
,
E.
,
Senecal
,
P. K.
, and
Kweon
,
C.
,
2016
, “
Large Eddy Simulation of High Reynolds Number Nonreacting and Reacting JP-8 Sprays in a Constant Pressure Flow Vessel With a Detailed Chemistry Approach
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032207
. 10.1115/1.4032901
30.
Hattori
,
H.
,
Houra
,
T.
,
Kono
,
A.
, and
Yoshikawa
,
S.
,
2017
, “
Computational Fluid Dynamics Study for Improvement of Prediction of Various Thermally Stratified Turbulent Boundary Layers
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051209
. 10.1115/1.4036177
31.
Houde
,
S.
,
Dumas
,
G.
, and
Deschênes
,
C.
,
2018
, “
Experimental and Numerical Investigations on the Origins of Rotating Stall in a Propeller Turbine Runner Operating in No-Load Conditions
,”
ASME J. Fluids Eng.
,
140
(
11
), p.
111104
. 10.1115/1.4039713
32.
Borkowski
,
D.
,
Węgiel
,
M.
,
Ocłoń
,
P.
, and
Węgiel
,
T.
,
2019
, “
CFD Model and Experimental Verification of Water Turbine Integrated with Electrical Generator
,”
Energy
,
185
, pp.
875
883
. 10.1016/j.energy.2019.07.091
33.
Xu
,
B.
,
Jun
,
H. B.
,
Chen
,
D.
,
Li
,
H.
,
Zhang
,
J.
,
Blanco
,
C. J. C.
, and
Shen
,
H.
,
2019
, “
Stability Analysis of a Hydro-Turbine Governing System Considering Inner Energy Losses
,”
Renewable Energy
,
134
, pp.
258
266
. 10.1016/j.renene.2018.11.026
34.
Zhang
,
H.
,
Chen
,
D.
,
Wu
,
C.
,
Wang
,
X.
,
Lee
,
J. M.
, and
Jung
,
K. H.
,
2017
, “
Dynamic Modeling and Dynamical Analysis of Pump-Turbines in S-Shaped Regions During Runaway Operation
,”
Energy Convers. Manage.
,
138
, pp.
375
382
. 10.1016/j.enconman.2017.01.053
35.
Yang
,
W.
,
Hou
,
Y.
,
Jia
,
H.
,
Liu
,
B.
, and
Xiao
,
R.
,
2019
, “
Lift-Type and Drag-Type Hydro Turbine with Vertical Axis for Power Generation From Water Pipelines
,”
Energy
,
188
, p.
116070
. 10.1016/j.energy.2019.116070
36.
Zhou
,
D.
,
Gui
,
J.
,
Deng
,
Z. D.
,
Chen
,
H.
,
Yu
,
Y.
,
Yu
,
A.
, and
Yang
,
C.
,
2019
, “
Development of An Ultra-Low Head Siphon Hydro Turbine Using Computational Fluid Dynamics
,”
Energy
,
181
, pp.
43
50
. 10.1016/j.energy.2019.05.060
37.
Wheeler
,
A. J.
, and
Ganji
,
A. R.
,
2009
,
Introduction to Engineering Experimentation
, 3rd ed.,
Pearson
,
Upper Saddle River, NJ
You do not currently have access to this content.