Abstract

In contrast to thermal receivers that provide heat for steam cycles, in solar thermochemistry often receiver-reactors are used, where materials undergo a reaction while being irradiated by concentrated sunlight. When applied to two-step redox cycles, multiple processes take place in such receiver-reactors, though on different timescales. This leads to design compromises and to high technical requirements for the implementation. A concept for an indirect particle-based system for thermochemical cycles was therefore proposed in which the heat required for the reduction of redox particles is provided by inert heat transfer particles that absorb concentrated solar radiation in a dedicated particle receiver. The novel and central component in this indirect system is the particle mix reactor. It functions by mixing the two particle types for heat transfer and establishing a controlled atmosphere under decreased oxygen partial pressures in a common reactor chamber. The design of an experimental setup for demonstration and investigation of the particle mix reactor is presented in this work. Potential operation modes and design options for particle heater, mixing unit, and oxygen partial pressure decrease are discussed and illustrated. The selection of a mixer type is based on the homogeneity of the obtained mixture. It is supported by the use of discrete element method (DEM) simulations, which were compared to experimental results from a separate setup. Heat loss estimations for the mixing process in the selected mixer geometry are performed for alumina heat transfer particles and strontium iron oxide redox particles. The components' geometries, the overall experimental setup design, as well as operation steps are presented.

References

1.
Kreith
,
F.
, and
West
,
R.
,
2004
, “
Fallacies of a Hydrogen Economy. A Critical Analysis of Hydrogen Production and Utilization
,”
ASME J. Energy Resour. Technol.
,
126
(
4
), p.
249
257
. 10.1115/1.1834851
2.
Brendelberger
,
S.
, and
Sattler
,
C.
,
2015
, “
Concept Analysis of an Indirect Particle-Based Redox Process for Solar-Driven H2O/CO2 Splitting
,”
Sol. Energy
,
113
, pp.
158
170
. 10.1016/j.solener.2014.12.035
3.
Ermanoski
,
I.
,
Siegel
,
N. P.
, and
Stechel
,
E. B.
,
2013
, “
A New Reactor Concept for Efficient Solar-Thermochemical Fuel Production
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
031002
. 10.1115/1.4023356
4.
Lacey
,
P. M. C.
,
1954
, “
Developments in the Theory of Particle Mixing
,”
J. Appl. Chem.
,
4
(
5
), pp.
257
268
. 10.1002/jctb.5010040504
5.
Felinks
,
J.
,
2016
, “
Wärmerückgewinnung aus Partikeln Mittels Kugelförmiger Wärmeträgermedien in Solaren Thermochemischen Kreisprozessen
,”
Dissertation
,
RWTH Aachen
,
Aachen, Germany
.
6.
Oschmann
,
T.
, and
Kruggel-Emden
,
H.
,
2018
, “
A Novel Method for the Calculation of Particle Heat Conduction and Resolved 3D Wall Heat Transfer for the CFD/DEM Approach
,”
Powder Technol.
,
338
, pp.
289
303
. 10.1016/j.powtec.2018.07.017
7.
Hertel
,
J.
,
Ebert
,
M.
,
Amsbeck
,
L.
,
Gobereit
,
B.
,
Rheinländer
,
J.
,
Hirt
,
A.
, and
Frantz
,
C.
,
2019
, “
Development and Test of a Direct Contact Heat Exchanger (Particle-Air) for Industrial Process Heat Applications
,”
ASME 2019 13th International Conference on Energy Sustainability
,
Bellevue, Washington
,
July 15–17
.
8.
Tescari
,
S.
,
Singh
,
A.
,
Agrafiotis
,
C.
,
de Oliveira
,
L.
,
Breuer
,
S.
,
Schlögl-Knothe
,
B.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2017
, “
Experimental Evaluation of a Pilot-Scale Thermochemical Storage System for a Concentrated Solar Power Plant
,”
Appl. Energy
,
189
, pp.
66
75
. 10.1016/j.apenergy.2016.12.032
9.
Singh
,
A.
,
Lapp
,
J.
,
Grobbel
,
J.
,
Brendelberger
,
S.
,
Reinhold
,
J. P.
,
Olivera
,
L.
,
Ermanoski
,
I.
,
Siegel
,
N. P.
,
McDaniel
,
A.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2017
, “
Design of a Pilot Scale Directly Irradiated, High Temperature, and Low Pressure Moving Particle Cavity Chamber for Metal Oxide Reduction
,”
Sol. Energy
,
157
, pp.
365
376
. 10.1016/j.solener.2017.08.040
10.
Fayed
,
M. E.
, and
Otten
,
L.
, eds.,
1997
,
Handbook of Powder Science & Technology
, 2nd ed.,
Springer US
,
Boston, MA
.
11.
Gersdorf
,
F.
,
2017
, “
Simulation des Mischvorgangs von Zwei Partikelsorten mit Hilfe der Diskrete Elemente Methode (DEM)
,”
Master thesis
,
TU Berlin, Berlin, Germany
.
12.
Miller
,
J. E.
,
McDaniel
,
A. H.
, and
Allendorf
,
M. D.
,
2014
, “
Considerations in the Design of Materials for Solar-Driven Fuel Production Using Metal-Oxide Thermochemical Cycles
,”
Adv. Energy Mater.
,
4
(
2
), p.
1300469
. 10.1002/aenm.201300469
13.
Whitaker
,
S.
,
1972
, “
Forced Convection Heat Transfer Correlations for Flow in Pipes, Past Flat Plates, Single Cylinders, Single Spheres, and for Flow in Packed Beds and Tube Bundles
,”
AIChE J.
,
18
(
2
), pp.
361
371
. 10.1002/aic.690180219
14.
Kloss
,
C.
,
Goniva
,
C.
,
Hager
,
A.
,
Amberger
,
S.
, and
Pirker
,
S.
,
2012
, “
Models, Algorithms and Validation for Opensource DEM and CFD-DEM
,”
Prog. Comput. Fluid Dyn.
,
12
(
2–3
), p.
140
152
. 10.1504/PCFD.2012.047457
15.
Wang
,
L.
,
Ma
,
T.
,
Chang
,
Z
,
Li
,
H.
,
Fu
,
M.
, and
Li
,
X.
,
2019
, “
Solar Fuels Production Via Two-Step Thermochemical Cycle Based on Fe3O4/Fe With Methane Reduction
,”
Sol. Energy
,
177
, pp.
772
781
. 10.1016/j.solener.2018.12.009
16.
Vieten
,
J.
,
Bulfin
,
B.
,
Senholdt
,
M.
,
Roeb
,
M.
,
Sattler
,
C.
, and
Schmücker
,
M.
,
2017
, “
Redox Thermo-Dynamics and Phase Composition in the System SrFeO 3−δ—SrMnO 3−δ
,”
Solid State Ionics
,
308
, pp.
149
155
. 10.1016/j.ssi.2017.06.014
17.
Dähler
,
F.
,
Wild
,
M.
,
Schäppi
,
R.
,
Haueter
,
P.
,
Cooper
,
T.
,
Good
,
P.
,
Larrea
,
C.
,
Schmitz
,
M.
,
Furler
,
P.
, and
Steinfeld
,
A.
,
2018
, “
Optical Design and Experimental Characterization of a Solar Concentrating Dish System for Fuel Production Via Thermochemical Redox Cycles
,”
Sol. Energy
,
170
, pp.
568
575
. 10.1016/j.solener.2018.05.085
18.
Zoller
,
S.
,
Koepf
,
E.
,
Roos
,
P.
, and
Steinfeld
,
A.
,
2019
, “
Heat Transfer Model of a 50 kW Solar Receiver–Reactor for Thermochemical Redox Cycling Using Cerium Dioxide
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021014
. 10.1115/1.4042059
19.
Brendelberger
,
S.
,
Vieten
,
J.
,
Vidyasagar
,
M. J.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2018
, “
Demonstration of Thermochemical Oxygen Pumping for Atmosphere Control in Reduction Reactions
,”
Sol. Energy
,
170
, pp.
273
279
. 10.1016/j.solener.2018.05.063
20.
Brendelberger
,
S.
,
Vieten
,
J.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2019
, “
Thermochemical Oxygen Pumping for Improved Hydrogen Production in Solar Redox Cycles
,”
Int. J. Hydrogen Energy
,
44
(
20
), pp.
9802
9810
. 10.1016/j.ijhydene.2018.12.135
21.
Haavik
,
C.
,
Bakken
,
E.
,
Norby
,
T.
,
Stølen
,
S.
,
Atake
,
T.
, and
Tojo
,
T.
,
2003
, “
Heat Capacity of SrFeO3–δ; δ=0.50, 0.25 and 0.15—Configurational Entropy of Structural Entities in Grossly Non-Stoichiometric Oxides
,”
Dalton Trans.
,
3
), pp.
361
368
. 10.1039/b209236k.
22.
Grobbel
,
J.
,
2018
, “
Modeling Solar Particle Receivers With the Discrete Element Method
,”
Dissertation
,
RWTH Aachen
,
Aachen, Germany
.
You do not currently have access to this content.