Abstract

Due to the promising potential for environmental sustainability, there has been a significant increase of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEV) in the market. To support this increasing demand for EVs and PHEVs, challenges related to capacity planning and investment costs of public charging infrastructure must be addressed. Hence, in this paper, a capacity planning problem for charging stations is developed and aims to balance the current capital investment costs and future operational revenue. The charging station is assumed to be equipped with the solar photovoltaic (PV) panel and an energy storage system, which could be electric battery or recently invented hydropneumatic energy storage (ground-level integrated diverse energy storage (GLIDES)) system. A co-optimization model that minimizes investment and operation cost is established to determine optimal solution while considering capacity planning and following operations. EV mobility is modeled as an Erlang-loss system. Meanwhile, stochastic programming is adopted to capture uncertainties from solar radiation and charging demand of EV fleet. To provide a more general and computationally efficient model, main configuration parameters are sampled in design space and then fixed in solving the co-optimization model. Sampled parameters include EV charging slots number, PV area, capacity of energy storage system, and daily mean EV arrival number. Based on the sampled parameter combinations and its responses, black-box mappings are then constructed using surrogate models, which could provide insights for charging station placement in different practical situations. The effectiveness of the proposed surrogate modeling approach is demonstrated in numerical experiments. The results indicate better profit advantage of GLIDES over battery system with the increased power capacity

References

1.
Cooper
,
A.
, and
Schefter
,
K.
,
2018
, “
Report Electric Vehicle Sales Forecast and the Charging Infrastructure Required Through 2030
,” Edison Electric Institute & Institute of Electric Innovation, Technical Report.
2.
Ugirumurera
,
J.
, and
Haas
,
Z.
,
2017
, “
Optimal Sizing of a Completely Green Charging System for Electric Vehicles
,”
IEEE Trans. Transp. Electrification
,
3
(
3
), pp.
1
1
. 10.1109/TTE.2017.2713098
3.
Dong
,
X.
,
Mu
,
Y.
,
Jia
,
H.
,
Wu
,
J.
, and
Yu
,
X.
,
2016
, “
Planning of Fast EV Charging Stations on a Round Freeway
,”
IEEE Trans. Sustainable Energy
,
7
(
4
), pp.
1452
1461
. 10.1109/TSTE.2016.2547891
4.
Sadeghi-Barzani
,
P.
,
Rajabi-Ghahnavieh
,
A.
, and
Kazemi-Karegar
,
H.
,
2014
, “
Optimal Fast Charging Station Placing and Sizing
,”
Appl. Energy
,
125
, pp.
289
299
. 10.1016/j.apenergy.2014.03.077
5.
Moradi
,
M. H.
,
Abedini
,
M.
,
Tousi
,
S. M.
, and
Hosseinian
,
S. M.
,
2015
, “
Optimal Siting and Sizing of Renewable Energy Sources and Charging Stations Simultaneously Based on Differential Evolution Algorithm
,”
Int. J. Electr. Power Energy Syst.
,
73
, pp.
1015
1024
. 10.1016/j.ijepes.2015.06.029
6.
Liu
,
Z.
,
Wen
,
F.
, and
Ledwich
,
G.
,
2013
, “
Optimal Planning of Electric-Vehicle Charging Stations in Distribution Systems
,”
IEEE Trans. Power Deliv.
,
28
(
1
), pp.
102
110
. 10.1109/TPWRD.2012.2223489
7.
Xiang
,
Y.
,
Liu
,
J.
,
Li
,
R.
,
Li
,
F.
,
Gu
,
C.
, and
Tang
,
S.
,
2016
, “
Economic Planning of Electric Vehicle Charging Stations Considering Traffic Constraints and Load Profile Templates
,”
Appl. Energy
,
178
, pp.
647
659
. 10.1016/j.apenergy.2016.06.021
8.
Chandra Mouli
,
G. R.
,
Bauer
,
P.
, and
Zeman
,
M.
,
2016
, “
System Design for a Solar Powered Electric Vehicle Charging Station for Workplaces
,”
Appl. Energy
,
168
(
2016
), pp.
434
443
. 10.1016/j.apenergy.2016.01.110
9.
Kuang
,
Y.
,
Chen
,
Y.
,
Hu
,
M.
, and
Yang
,
D.
,
2017
, “
Influence Analysis of Driver Behavior and Building Category on Economic Performance of Electric Vehicle to Grid and Building Integration
,”
Appl. Energy
,
207
, pp.
427
437
. 10.1016/j.apenergy.2017.07.006
10.
Bayram
,
I. S.
,
Tajer
,
A.
,
Abdallah
,
M.
, and
Qaraqe
,
K.
,
2015
, “
Capacity Planning Frameworks for Electric Vehicle Charging Stations With Multiclass Customers
,”
IEEE Trans. Smart Grid
,
6
(
4
), pp.
1934
1943
. 10.1109/TSG.2015.2406532
11.
Schneider
,
F.
,
Thonemann
,
U. W.
, and
Klabjan
,
D.
,
2018
, “
Optimization of Battery Charging and Purchasing at Electric Vehicle Battery Swap Stations
,”
Transp. Sci.
,
52
(
5
), pp.
1211
1234
. 10.1287/trsc.2017.0781
12.
Sun
,
B.
,
Tan
,
X.
, and
Tsang
,
D. H. K.
,
2018
, “
Optimal Charging Operation of Battery Swapping and Charging Stations With Qos Guarantee
,”
IEEE Trans. Smart Grid
,
9
(
5
), pp.
4689
4701
. 10.1109/TSG.2017.2666815
13.
Diwan
,
P.
,
2018
, “
Is Battery Swapping a Viable Option for Public Transportation EVs?
,” https://medium.com/@pdiwan/is-battery-swapping-a-viable-option-for-public-transportation-evs-adb4ced74ff2, Accessed January 10, 2019.
14.
Energy Information Administration
,
2018
, “U.S. Battery Storage Market Trends.”
15.
Xie
,
L.
,
Gu
,
Y.
,
Eskandari
,
A.
, and
Ehsani
,
M.
,
2012
, “
Fast MPC-Based Coordination of Wind Power and Battery Energy Storage Systems
,”
J. Energy Eng.
,
138
(
2
), pp.
43
53
. 10.1061/(ASCE)EY.1943-7897.0000071
16.
Bordin
,
C.
,
Anuta
,
H. O.
,
Crossland
,
A.
,
Gutierrez
,
I. L.
,
Dent
,
C. J.
, and
Vigo
,
D.
,
2017
, “
A Linear Programming Approach for Battery Degradation Analysis and Optimization in Offgrid Power Systems With Solar Energy Integration
,”
Renewable Energy
,
101
, pp.
417
430
. 10.1016/j.renene.2016.08.066
17.
Momen
,
A. M.
,
Kyle
,
J.
,
Abdelaziz
,
O. A.
,
Vineyard
,
E. A.
,
Abu-heiba
,
A.
, and
Odukomaiya
,
A. O.
,
2017
, “
Near Isothermal Combined Compressed Gas/Pumped-Hydro Electricity Storage With Waste Heat Recovery Capabilities
,” Current Assignee: UT-Battelle LLC, U.S. Patent No. 2017/0082123 A1.
18.
Odukomaiya
,
A.
,
Abu-Heiba
,
A.
,
Gluesenkamp
,
K. R.
,
Abdelaziz
,
O.
,
Jackson
,
R. K.
,
Daniel
,
C.
,
Graham
,
S.
, and
Momen
,
A. M.
,
2016
, “
Thermal Analysis of Near-Isothermal Compressed Gas Energy Storage System
,”
Appl. Energy
,
179
, pp.
948
960
. 10.1016/j.apenergy.2016.07.059
19.
Odukomaiya
,
A.
,
Abu-Heiba
,
A.
,
Graham
,
S.
, and
Momen
,
A. M.
,
2018
, “
Experimental and Analytical Evaluation of a Hydro-Pneumatic Compressed-Air Ground-Level Integrated Diverse Energy Storage (GLIDES) System
,”
Appl. Energy
,
221
, pp.
75
85
. 10.1016/j.apenergy.2018.03.110
20.
Chen
,
Y.
,
Odukomaiya
,
A.
,
Kassaee
,
S.
,
O’Connor
,
P.
,
Momen
,
A. M.
,
Liu
,
X.
, and
Smith
,
B. T.
,
2019
, “
Preliminary Analysis of Market Potential for a Hydropneumatic Ground-Level Integrated Diverse Energy Storage System
,”
Appl. Energy
,
242
, pp.
1237
1247
. 10.1016/j.apenergy.2019.03.076
21.
Pérez-Díaz
,
J. I.
,
Chazarra
,
M.
,
García-González
,
J.
,
Cavazzini
,
G.
, and
Stoppato
,
A.
,
2015
, “
Trends and Challenges in the Operation of Pumped-Storage Hydropower Plants
,”
Renewable. Sustainable. Energy. Rev.
,
44
, pp.
767
784
. 10.1016/j.rser.2015.01.029
22.
Mazloum
,
Y.
,
Sayah
,
H.
, and
Nemer
,
M.
,
2016
, “
Static and Dynamic Modeling Comparison of an Adiabatic Compressed Air Energy Storage System
,”
ASME J. Energy. Res. Technol.
,
138
(
6
), p.
062001
. 10.1115/1.4033399
23.
Sciacovelli
,
A.
,
Smith
,
D.
,
Navarro
,
M. E.
,
Vecchi
,
A.
,
Peng
,
X.
,
Li
,
Y.
,
Radcliffe
,
J.
, and
Ding
,
Y.
,
2017
, “
Performance Analysis and Detailed Experimental Results of the First Liquid Air Energy Storage Plant in the World
,”
ASME J. Energy. Res. Technol.
,
140
(
2
), p.
020908
. 10.1115/1.4038378
24.
McTigue
,
J. D.
,
White
,
A. J.
, and
Markides
,
C. N.
,
2015
, “
Parametric Studies and Optimisation of Pumped Thermal Electricity Storage
,”
Appl. Energy
,
137
, pp.
800
811
. 10.1016/j.apenergy.2014.08.039
25.
Zhang
,
B.
,
Yan
,
Q.
, and
Kezunovic
,
M.
,
2017
, “
Placement of EV Charging Stations Integrated With PV Generation and Battery Storage
,”
2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER)
,
Monte Carlo, Monaco
,
Apr. 11–13
, pp.
1
7
.
26.
Forrester
,
A. I. J.
,
Sobester
,
A.
, and
Keane
,
A. J.
,
2008
,
Engineering Design Via Surrogate Modelling—A Practical Guide
,
Wiley
,
New York
.
27.
Gano
,
S.
,
Kim
,
H.
, and
Brown
,
D.
,
2012
, “
Comparison of Three Surrogate Modeling Techniques: Datascape, Kriging, and Second Order Regression
,”
11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Portsmouth, VA
,
Sept. 6–8
.
28.
Bouhlel
,
M. A.
,
Hwang
,
J. T.
,
Bartoli
,
N.
,
Lafage
,
R.
,
Morlier
,
J.
, and
Martins
,
J. R.
,
2019
, “
A Python Surrogate Modeling Framework With Derivatives
,”
Adv. Eng. Softw.
,
135
, p.
102662
. 10.1016/j.advengsoft.2019.03.005
29.
Nielsen
,
H. B.
,
Lophaven
,
S. N.
, and
Søndergaard
,
J.
,
2002
, DACE—A MATLAB Kriging Toolbox, Technical University of Denmark, Informatics and mathematical Modelling.
30.
Chen
,
Y.
,
Hu
,
M.
, and
Zhou
,
Z.
,
2017
, “
A Data-Driven Analytical Approach to Enable Optimal Emerging Technologies Integration in the Co-optimized Electricity and Ancillary Service Markets
,”
Energy
,
122
, pp.
613
626
. 10.1016/j.energy.2017.01.102
31.
Chen
,
Y.
, and
Hu
,
M.
,
2016
, “
Balancing Collective and Individual Interests in Transactive Energy Management of Interconnected Micro-grid Clusters
,”
Energy
,
109
, pp.
1075
1085
. 10.1016/j.energy.2016.05.052
32.
National Renewable Energy Laboratory
,
2017
, “National Solar Radiation Data Base.”
33.
Kim
,
J.-H.
, and
Kim
,
C.-H.
,
2016
, “
Demand Power With EV Charging Schemes Considering Actual Data
,”
J. Int. Council Electr. Eng.
,
6
(
1
), pp.
235
241
. 10.1080/22348972.2016.1254080
34.
Gröwe-Kuska
,
N.
,
Heitsch
,
H.
, and
Römisch
,
W.
,
2003
, “
Scenario Reduction and Scenario Tree Construction for Power Management Problems
,”
2003 IEEE Bologna Power Tech Conference Proceedings
,
Bologna, Italy
,
June 23–26
, pp.
152
158
.
36.
DiOrio
,
N.
,
Dobos
,
A.
, and
Janzou
,
S.
,
2015
, “
Economic Analysis Case Studies of Battery Energy Storage with SAM
,” Technical Report, National Renewable Energy Laboratory, Golden, CO.
37.
Kassaee
,
S.
,
Abu-Heiba
,
A.
,
Ally
,
M. R.
,
Mench
,
M. M.
,
Liu
,
X.
,
Odukomaiya
,
A.
,
Chen
,
Y.
,
King
,
T. J.
,
Smith
,
B. T.
, and
Momen
,
A. M.
,
2019
, “
Part 1—Techno-economic Analysis of a Grid Scale Ground-Level Integrated Diverse Energy Storage (Glides) Technology
,”
J. Energy Storage
,
25
, p.
100792
. 10.1016/j.est.2019.100792
38.
Kassaee
,
S.
,
Odukomaiya
,
A.
,
Abu-Heiba
,
A.
,
Liu
,
X.
,
Mench
,
M. M.
, and
O’Connor
,
P.
,
2018
, “
Ground Level Integrated Diverse Energy Storage (GLIDES) Cost Analysis
,”
ASME International Mechanical Engineering Congress and Exposition
,
Pittsburgh, PA
,
Nov. 9–15
, p.
V06BT08A059
.
You do not currently have access to this content.