Abstract

Thermoacoustics (TA) deals with the conversion of heat into sound and vice versa. The device that transfers energy from a low-temperature reservoir to a high-temperature one by utilizing acoustic work is called TA cooler (TAC). The main components of a typical TAC are a resonator, a porous regenerator (e.g., stack of parallel plates), and two heat exchangers. The thermoacoustic phenomenon takes place in the regenerator where a nonzero temperature gradient is imposed and interacts with the sound wave. The low temperature at the cold end of TAC can be used to condense water from the humid air and also reduce the moisture. In the current study, the sound wave with high intensity was produced to drive a TAC to produce cooling power at a cold temperature around 18 °C, using saturated water vapor as the working fluid. The drainage of condensate in the regenerator is the key to the system’s performance. This work is dedicated to investigate the effect from temperature gradient created in TAC on the condensation enhancement, by adopting three different designs of regenerators. A 3D printer was used to design and fabricate different structures of regenerator, and then, the systematic cooling capacity was tested and compared with different regenerators. This work can be extended to evaluate how the TA effect can be affected by the condensation if humid air is directly used as the working fluid. The potential application of this investigation can be an autonomous TAC system for water harvesting in arid areas.

References

1.
Dhuchakallaya
,
I.
, and
Saechan
,
P.
,
2017
, “
Design and Experimental Study of a Cascade Thermoacoustic Engine for Remote and Rural Communities
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032004
. 10.1115/1.4035749
2.
Tasnim
,
S. H.
,
2017
, “
An Experimental Study on Heterogeneous Porous Stacks in a Thermoacoustic Heat Pump
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042005
. 10.1115/1.4036053
3.
Buliński
,
Z.
,
Szczygieł
,
I.
,
Kabaj
,
A.
,
Krysiński
,
T.
,
Gładysz
,
P.
,
Czarnowska
,
L.
, and
Stanek
,
W.
,
2018
, “
Performance Analysis of the Small-Scale α-Type Stirling Engine Using Computational Fluid Dynamics Tools
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032001
. 10.1115/1.4037810
4.
Swift
,
G. W.
,
1988
, “
Thermoacoustic Engines
,”
J. Acoust. Soc. Am.
,
84
(
4
), pp.
1145
1180
. 10.1121/1.396617
5.
Hou
,
M.
,
Wu
,
Z.
,
Yu
,
G.
,
Hu
,
J.
, and
Luo
,
E.
,
2018
, “
A Thermoacoustic Stirling Electrical Generator for Cold Exergy Recovery of Liquefied Nature Gas
,”
Appl. Energy
,
226
, pp.
389
396
. 10.1016/j.apenergy.2018.05.120
6.
Bennett
,
G. A.
,
1992
, “
Analytical Approach to Selecting and Designing a Miniature Downhole Refrigerator
,”
ASME J. Energy Resour. Technol.
,
114
(
4
), pp.
339
344
. 10.1115/1.2905962
7.
Zolpakar
,
N. A.
,
Mohd-Ghazali
,
N.
,
Ahmad
,
R.
, and
Maré
,
T.
,
2017
, “
Performance of a 3D-Printed Stack in a Standing Wave Thermoacoustic Refrigerator
,”
Energy Procedia
,
105
, pp.
1382
1387
. 10.1016/j.egypro.2017.03.513
8.
Ajith Krishnan
,
R.
, and
Sandeep
,
V. S.
,
2013
, “
Study on a Standing Wave Thermoacoustic Refrigerator Made of Readily Available Materials
,”
Int. J. Sci. Res. Publ.
,
3
(
7
), pp.
1
30
.
9.
Tu
,
Y.
,
Wang
,
R.
,
Zhang
,
Y.
, and
Wang
,
J.
,
2018
, “
Progress and Expectation of Atmospheric Water Harvesting
,”
Joule
,
2
(
8
), pp.
1452
1475
. 10.1016/j.joule.2018.07.015
10.
Malik
,
F. T.
,
Clement
,
R. M.
,
Gethin
,
D. T.
,
Krawszik
,
W.
, and
Parker
,
A. R.
,
2014
, “
Nature's Moisture Harvesters: A Comparative Review
,”
Bioinspiration Biomimetics
,
9
(
3
), p.
031002
. 10.1088/1748-3182/9/3/031002
11.
Shi
,
W.
,
Anderson
,
M. J.
,
Tulkoff
,
J. B.
,
Kennedy
,
B. S.
, and
Boreyko
,
J. B.
,
2018
, “
Fog Harvesting With Harps
,”
ACS Appl. Mater. Interfaces
,
10
(
14
), pp.
11979
11986
. 10.1021/acsami.7b17488
12.
Tian
,
Y.
,
Zhu
,
P.
,
Tang
,
X.
,
Zhou
,
C.
,
Wang
,
J.
,
Kong
,
T.
,
Xu
,
M.
, and
Wang
,
L.
,
2017
, “
Large-Scale Water Collection of Bioinspired Cavity-Microfibers
,”
Nat. Commun.
,
8
(
1
), p.
1080
. 10.1038/s41467-017-01157-4
13.
Kim
,
H.
,
Yang
,
S.
,
Rao
,
S. R.
,
Narayanan
,
S.
,
Kapustin
,
E. A.
,
Furukawa
,
H.
,
Umans
,
A. S.
,
Yaghi
,
O. M.
, and
Wang
,
E. N.
,
2017
, “
Water Harvesting From Air With Metal-Organic Frameworks Powered by Natural Sunlight
,”
Science
,
356
(
6336
), pp.
430
434
. 10.1126/science.aam8743
14.
Wang
,
J. Y.
,
Liu
,
J. Y.
,
Wang
,
R. Z.
, and
Wang
,
L. W.
,
2017
, “
Experimental Research of Composite Solid Sorbents for Fresh Water Production Driven by Solar Energy
,”
Appl. Therm. Eng.
,
121
, pp.
941
950
. 10.1016/j.applthermaleng.2017.04.161
15.
Fathieh
,
F.
,
Kalmutzki
,
M. J.
,
Kapustin
,
E. A.
,
Waller
,
P. J.
,
Yang
,
J.
, and
Yaghi
,
O. M.
,
2018
, “
Practical Water Production From Desert air
,”
Sci. Adv.
,
4
(
6
), p.
eaat3198
. 10.1126/sciadv.aat3198
16.
Kang
,
H.
,
Zhou
,
G.
, and
Li
,
Q.
,
2010
, “
Thermoacoustic Effect of Traveling–Standing Wave
,”
Cryogenics
,
50
(
8
), pp.
450
458
. 10.1016/j.cryogenics.2010.05.003
17.
Tasnim
,
S. H.
,
Mahmud
,
S.
, and
Fraser
,
R. A.
,
2012
, “
Effects of Variation in Working Fluids and Operating Conditions on the Performance of a Thermoacoustic Refrigerator
,”
Int. Commun. Heat Mass Transfer
,
39
(
6
), pp.
762
768
. 10.1016/j.icheatmasstransfer.2012.04.013
18.
Zimmerman
,
O. T.
, and
Lavine
,
I.
,
1964
,
Psychrometric Tables and Charts
,
Industrial Research Service. Inc.
,
Dover, NH
.
19.
Hiller
,
R. A.
, and
Swift
,
G. W.
,
2000
, “
Condensation in a Steady-Flow Thermoacoustic Refrigerator
,”
J. Acoust. Soc. Am.
,
108
(
4
), pp.
1521
1527
. 10.1121/1.1289664
20.
Tijani
,
M. E. H.
,
Zeegers
,
J. C. H.
, and
De Waele
,
A. T. A. M.
,
2002
, “
Construction and Performance of a Thermoacoustic Refrigerator
,”
Cryogenics
,
42
(
1
), pp.
59
66
. 10.1016/S0011-2275(01)00180-1
21.
Babaei
,
H.
, and
Siddiqui
,
K.
,
2008
, “
Design and Optimization of Thermoacoustic Devices
,”
Energy Convers. Manage.
,
49
(
12
), pp.
3585
3598
. 10.1016/j.enconman.2008.07.002
22.
Jin
,
T.
,
Huang
,
J.
,
Feng
,
Y.
,
Yang
,
R.
,
Tang
,
K.
, and
Radebaugh
,
R.
,
2015
, “
Thermoacoustic Prime Movers and Refrigerators: Thermally Powered Engines Without Moving Components
,”
Energy
,
93
, pp.
828
853
. 10.1016/j.energy.2015.09.005
23.
Legg
,
R.
,
2017
, “Chapter 1—Properties of Humid Air,”
Air Conditioning System Design
,
Butterworth-Heinemann
,
Oxford, UK
, pp.
1
28
.
24.
Wheatley
,
J.
,
Hofler
,
T.
,
Swift
,
G. W.
, and
Migliori
,
A.
,
1985
, “
Understanding Some Simple Phenomena in Thermoacoustics With Applications to Acoustical Heat Engines
,”
Am. J. Phys.
,
53
(
2
), pp.
147
162
. 10.1119/1.14100
25.
Tang
,
K.
,
Huang
,
Z. J.
,
Jin
,
T.
, and
Chen
,
G. B.
,
2009
, “
Influence of Acoustic Pressure Amplifier Dimensions on the Performance of a Standing-Wave Thermoacoustic System
,”
Appl. Therm. Eng.
,
29
(
5–6
), pp.
950
956
. 10.1016/j.applthermaleng.2008.05.001
26.
Bird
,
B. R.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2007
,
Transport Phenomena
, 2nd ed.,
John Wiley & Sons, Inc.
,
New York
, p.
266
.
You do not currently have access to this content.