Abstract

The results of investigations on solids flow in a cold model of the dual fluidized bed reactor designed for chemical looping combustion of solid fuels (DFB-CLC-SF) are presented in this paper. The constructed unit consists of two interconnected reactors. The first one, so-called fuel reactor (FR), is operated under bubbling fluidized bed (BFB) conditions, whereas the second one, so-called air reactor (AR), is structurally divided into two sections. The bottom part of AR works under BFB while the upper part, i.e., the riser, is operated in the fast fluidized bed (FFB) regime. In these studies, the air was used for fluidization process in all parts of the DFB-CLC-SF reactor. The glass beads with similar parameters to oxygen carriers (OCs) used in the CLC process were utilized as an inventory. The fluidization conditions are controlled by using the sets of pressure sensors installed around the circulation loop. The experimental data acquired in the tests are further employed to the analysis of solids behavior in a cold model of the DFB-CLC-SF reactor. The main goal of these studies was to establish the conditions for smooth fluidization, which concurrently provide the required residence time of solids in both reactors that is one of the most crucial factors in the CLC process. It was found that the fluidizing gas velocity in reactors has a significant impact on solids behavior and the investigated parameters. However, what is the most important, it was confirmed that the operation condition of the DFB-CLC-SF reactor can be adjusted to meet the requirements resulting from the properties of OCs.

References

1.
IPCC
,
2007
, Climate Change 2007: “
Synthesis Report
”.
2.
IPCC. Climate Change
,
2014
, Synthesis Report, “
Fifth Assessment Synthesis Report
”,
United Nations Organizations
, 2014.
3.
Tola
,
V.
,
Cau
,
G.
,
Ferrara
,
F.
, and
Pettinau
,
A.
,
2016
, “
CO2 Emissions Reduction From Coal-Fired Power Generation: A Techno-Economic Comparison
,”
ASME J. Energy Resour. Technol.
,
138
(
6)
, p.
061602
. 10.1115/1.4034547
4.
Zarzycki
,
R.
, and
Panowski
,
M.
,
2018
, “
Analysis of the Flue Gas Preparation Process for the Purposes of Carbon Dioxide Separation Using the Adsorption Methods
,”
ASME J. Energy Resour. Technol.
,
140
(
3),
p.
032008
. 10.1115/1.4038665
5.
Richter
,
H. J.
, and
Knoche
,
K. F.
,
1983
,
Reversibility of Combustion Process in Efficiency and Costing Second Law Analysis of Process
,
American Chemical Society
,
Washington, DC
, ACS Symposium Series Washington,
235
, pp.
71
85
.
6.
Ishida
,
M.
,
Zheng
,
D.
, and
Akehata
,
T.
,
1987
, “
Evaluation of a Chemical-Looping-Combustion Power-Generation System by Graphic Exergy Analysis
,”
Energy
,
12
(
2
), pp.
147
154
. 10.1016/0360-5442(87)90119-8
7.
Ishida
,
M.
, and
Jin
,
H.
,
1994
, “
A New Advanced Power-Generation System Using Chemical Looping Combustion
,”
Energy
,
19
(
4
), pp.
415
422
. 10.1016/0360-5442(94)90120-1
8.
Lyngfelt
,
A.
, and
Leckner
,
B.
,
2015
, “
A 1000 MWth Boiler for Chemical-Looping Combustion of Solid Fuels – Discussion of Design and Costs
,”
Appl. Energy
,
157
, pp.
475
487
. 10.1016/j.apenergy.2015.04.057
9.
Mendiara
,
T.
,
Pérez-Astray
,
A.
,
Izquierdo
,
M. T.
,
Abad
,
A.
,
de Diego
,
L. F.
,
García-Labiano
,
F.
,
Gayán
,
P.
, and
Adánez
,
J.
,
2018
, “
Chemical Looping Combustion of Different Types of Biomass in a 0.5 KWth Unit
,”
Fuel
,
211
, pp.
868
875
. 10.1016/j.fuel.2017.09.113
10.
Ohlemüller
,
P.
,
Busch
,
J. P.
,
Reitz
,
M.
,
Ströhle
,
J.
, and
Epple
,
B.
,
2016
, “
Chemical-Looping Combustion of Hard Coal: Autothermal Operation of a 1 MWth Pilot Plant
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042203
. 10.1115/1.4032357
11.
Lyngfelt
,
A.
,
2014
, “
Chemical-Looping Combustion of Solid Fuels—Status of Development
,”
Appl. Energy
,
113
, pp.
1869
1873
. 10.1016/j.apenergy.2013.05.043
12.
Adánez-Rubio
,
I.
,
Pérez- Astray
,
A.
,
Mendiara
,
T.
,
Izquierdo
,
M. T.
,
Abad
,
A.
,
Gayán
,
P.
,
de Diego
,
L. F.
,
García-Labiano
,
F.
, and
Adánez
,
J.
,
2018
, “
Chemical Looping Combustion of Biomass: CLOU Experiments With Cu-Mn Mixed Oxide
,”
Fuel Process. Technol.
,
172
, pp.
179
186
. 10.1016/j.fuproc.2017.12.010
13.
Pröll
T.
,
2015
, “Fundamentals of Chemical Looping Combustion and Introduction to CLC Reactor Design,”
Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture (A Volume in Woodhead Publishing Series in Energy)
,
P.
Fennell
and
B.
Anthony
, eds.,
Woodhead Publishing
,
Sawston and Cambridge, UK
, pp.
197
219
.
14.
Pérez-Vega
,
R.
,
Abad
,
A.
,
García-Labiano
,
F.
,
Gayán
,
P.
,
de Diego
,
L. F.
,
Izquierdo
,
M. T.
, and
Adánez
,
J.
,
2018
, “
Chemical Looping Combustion of Gaseous and Solid Fuels With Manganese-Iron Mixed Oxide as Oxygen Carrier
,”
Energy Convers. Manage.
,
159
, pp.
221
231
. 10.1016/j.enconman.2018.01.007
15.
Idziak
,
K.
,
Kulicki
,
K.
,
Jankowska
,
S.
,
Czakiert
,
T.
,
Żyłka
,
A.
,
Krzywański
,
J.
, and
Nowak
,
W.
, “
Emissions of NOx and SOx From Fluidized-Bed Chemical-Looping Combustion of Solid-Fuel (FB-CLC-SF) With Ilmenite as an Oxygen Carrier
,”
Proceedings of the 8th European Combustion Meeting, Dubrovnik
,
Croatia
,
Apr. 18–21, 2017
, pp.
1769
1774
.
16.
Adánez
,
J.
,
Abad
,
A.
,
García-Labiano
,
F.
,
Gayán
,
P.
, and
de Diego
,
L. F.
,
2012
, “
Progress in Chemical Looping Combustion and Reforming Technologies
,”
Prog. Energy Combust. Sci.
,
38
(
2
), pp.
215
282
. 10.1016/j.pecs.2011.09.001
17.
Velasco-Sarria
,
F. J.
,
Forero
,
C. R.
,
Adánez-Rubio
,
I.
,
Abad
,
A.
, and
Adánez
,
J.
,
2018
, “
Assessment of Low-Cost Oxygen Carrier in South-Western Colombia, and Its Use in the In-Situ Gasification Chemical Looping Combustion Technology
,”
Fuel
,
218
, pp.
417
424
. 10.1016/j.fuel.2017.11.078
18.
Linderholm
C.
, and
Lyngfelt
A.
,
2015
, “Chemical-looping Combustion of Solid Fuels,”
Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture (A Volume in Woodhead Publishing Series in Energy)
,
P.
Fennell
and
B.
Anthony
, eds.,
Woodhead Publishing
,
Sawston and Cambridge, UK
, pp.
221
254
.
19.
Matthias
,
A.
,
Schnellmann
,
A.
,
Donat
,
F.
,
Scott
,
S. A.
,
Williams
,
G.
, and
Dennis
,
J. S.
,
2018
, “
The Effect of Different Particle Residence Time Distributions on the Chemical Looping Combustion Process
,”
Appl. Energy
,
216
, pp.
358
366
. 10.1016/j.apenergy.2018.02.046
20.
Naqvi
,
R.
,
Wolf
,
J.
, and
Bolland
,
O.
,
2007
, “
Part-Load Analysis of a Chemical Looping Combustion (CLC) Combined Cycle With CO2 Capture
,”
Energy
,
32
(
4
), pp.
360
370
. 10.1016/j.energy.2006.07.011
21.
Hassan
,
B.
,
Ogidiama
,
O. V.
,
Khan
,
M. N.
, and
Shamim
,
T.
,
2016
, “
Energy and Exergy Analyses of a Power Plant With Carbon Dioxide Capture Using Multistage Chemical Looping Combustion
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032002
. 10.1115/1.4035057
22.
Czakiert
,
T.
,
Idziak
,
K.
,
Krzywański
,
J.
,
Żyłka
,
A.
, and
Nowak
,
W.
,
2018
, “
Investigations on Solid Fuels Combustion in Chemical-Looping Fluidized-Bed System
,”
Book of Abstracts, Joint Meeting of the Polish and Scandinavian-Nordic Sections of the Combustion Institute
,
Krakow, Poland
,
Sept. 6–7
, pp.
139
141
.
23.
Krzywański
,
J.
,
Żyłka
,
A.
,
Czakiert
,
T.
,
Kulicki
,
K.
,
Jankowska
,
S.
, and
Nowak
,
W.
,
2017
, “
A 1.5D Model of a Complex Geometry Laboratory Scale Fluidized Bed CLC Equipment
,”
Powder Technol.
,
316
, pp.
592
598
. 10.1016/j.powtec.2016.09.041
24.
Kunii
,
D.
, and
Levenspiel
,
O.
,
1991
,
Fluidization Engineering
,
Butterworth-Heinemann
,
Stoneham
.
25.
Basu
,
P.
,
2015
,
Circulating Fluidized Bed Boilers-Design, Operation and Maintenance
,
Springer International Publishing
,
Switzerland
.
26.
Czakiert
,
T.
,
Sztekler
,
K.
,
Karski
,
S.
,
Markiewicz
,
D.
, and
Nowak
,
W.
,
2010
, “
Oxy-Fuel Circulating Fluidized Bed Combustion in a Small Pilot-Scale Test Rig
,”
Fuel Process. Technol.
,
91
(
11
), pp.
1617
1623
. 10.1016/j.fuproc.2010.06.010
27.
Jankowska
,
S.
,
Czakiert
,
T.
,
Krawczyk
,
G.
,
Borecki
,
P.
,
Jesionowski
,
L.
, and
Nowak
,
W.
,
2014
, “
The Effect of Oxygen Staging on Nitrogen Conversion in Oxy-Fuel CFB Environment
,”
Chem. Process Eng.
,
35
(
4
), pp.
489
496
. 10.2478/cpe-2014-0036
28.
Pröll
,
T.
,
Rupanovits
,
K.
,
Kolbitsch
,
P.
,
Bolhàr-Nordenkampf
,
J.
, and
Hofbauer
,
H.
,
2009
, “
Cold Flow Model Study on a Dual Circulating Fluidized Bed System for Chemical Looping Processes
,”
Chem. Eng. Technol.
,
32
(
3
), pp.
418
424
. 10.1002/ceat.200800521
29.
Dubey
,
A. K.
,
Samanta
,
A.
,
Karmakar
,
M. K.
,
Mukherjee
,
A.
,
Loha
,
C.
,
Kumar
,
M.
,
Sahu
,
S. G.
,
Saxena
,
V. K.
, and
Chatterjee
,
P. K.
,
2018
, “
Hydrodynamics Characteristics in a Pilot-Scale Cold Flow Model for Chemical Looping Combustion
,”
Adv. Powder Technol.
,
29
(
6
), pp.
1499
1506
. 10.1016/j.apt.2018.03.017
30.
Bischi
,
A.
,
Langørgen
,
Ø.
,
Morin
,
J. X.
,
Bakken
,
J.
,
Ghorbaniyan
,
M.
,
Bysveen
,
M.
, and
Bolland
,
O.
,
2011
, “
Performance Analysis of the Cold Flow Model of a Second Generation Chemical Looping Combustion Reactor System
,”
Energy Procedia
,
4
, pp.
449
456
. 10.1016/j.egypro.2011.01.074
31.
Bischi
,
A.
,
Langørgen
,
Ø.
,
Morin
,
J. X.
,
Bakken
,
J.
,
Ghorbaniyan
,
M.
,
Bysveen
,
M.
, and
Bolland
,
O.
,
2012
, “
Hydrodynamic Viability of Chemical Looping Process by Means of Cold Flow Model Investigation
,”
Appl. Energy
,
97
, pp.
201
216
. 10.1016/j.apenergy.2011.12.051
32.
Markström
,
P.
, and
Lyngfelt
,
A.
,
2012
, “
Designing and Operating a Cold-Flow Model of a 100 kW Chemical-Looping Combustor
,”
Powder Technol.
,
222
, pp.
182
192
. 10.1016/j.powtec.2012.02.041
You do not currently have access to this content.