This work is an experimental and computational study to investigate the effect of capacitive discharge ignition (CDI) on plasma kernel formation and flame propagation of air–propane mixture. This paper is mainly focused on the plasma formation and flame propagation characteristics, pressure rise, propagation time, velocity field, and species concentrations. A conventional ignition system is used for comparison purpose. A constant volume combustion chamber with volume of 400 cm3 is designed for experimental study. This chamber is utilized to visualize the plasma formation as well as the flame propagation induced from two ignition sources. The experiments are performed in a wide range of operating conditions, i.e., initial pressure of 2–4 bar, temperature of 300 K, chamber wall temperature of 350 K, spark plug gaps of 1.0–1.5 mm, discharge duration of 1 ms, discharge energy of 500 mJ, and equivalence ratio of 0.5–1.0. The computational study is performed by ANSYS fluent using the partially premixed combustion (PPC) model having the same conditions as experimental study. It is shown that the average peak pressure in CDI increased by 5.79%, 4.84% and 4.36% at initial pressures of 2, 3, and 4 bar, respectively, comparing with conventional ignition. It could be determined that the impact of combustion pressure in CDI system is more significant than conventional ignition particularly in lean mixtures. Consequently, the flame propagation rate in CDI system, due to the large ionized kernel around the spark plug, can be significantly enhanced.

References

1.
Verhelst
,
S.
,
Turner
,
J. W.
,
Sileghem
,
L.
, and
Vancoillie
,
J.
,
2018
, “
Methanol as a Fuel for Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
70
, pp.
43
88
.
2.
Yue
,
Z.
, and
Reitz
,
R. D.
,
2018
, “
Numerical Investigation of Radiative Heat Transfer in Internal Combustion Engines
,”
Appl. Energy
,
235
, pp.
147
163
.
3.
Tang
,
Q.
,
Liu
,
H.
,
Li
,
M.
,
Yao
,
M.
, and
Li
,
Z.
,
2017
, “
Study on Ignition and Flame Development in Gasoline Partially Premixed Combustion Using Multiple Optical Diagnostics
,”
Combust. Flame
,
177
, pp.
98
108
.
4.
An
,
Y.
,
Jaasim
,
M.
,
Raman
,
V.
,
Hern Andez
,
P.
,
Erez
,
F. E.
,
Sim
,
J.
,
Chang
,
J.
,
Im
,
H. G.
, and
Johansson
,
B.
,
2018
, “
Homogeneous Charge Compression Ignition (HCCI) and Partially Premixed Combustion (PPC) in Compression Ignition Engine With Low Octane Gasoline
,”
Energy
,
158
, pp.
181
191
.
5.
Wang
,
Y.
,
Yao
,
M.
,
Li
,
T.
,
Zhang
,
W.
, and
Zheng
,
Z.
,
2016
, “
A Parametric Study for Enabling Reactivity Controlled Compression Ignition (RCCI) Operation in Diesel Engines at Various Engine Loads
,”
Appl. Energy
,
175
, pp.
389
402
.
6.
Liu
,
Q.
,
Fu
,
J.
,
Zhu
,
G.
,
Li
,
Q.
,
Liu
,
J.
,
Duan
,
X.
, and
Guo
,
Q.
,
2018
, “
Comparative Study on Thermodynamics, Combustion and Emissions of Turbocharged Gasoline Direct Injection (GDI) Engine Under NEDC and Steady-State Conditions
,”
Energy Convers. Manag.
,
169
, pp.
111
123
.
7.
Askari
,
O.
,
Metghalchi
,
H.
,
Kazemzadeh Hannani
,
S.
,
Moghaddas
,
A.
,
Ebrahimi
,
R.
, and
Hemmati
,
H.
,
2012
, “
Fundamental Study of Spray and Partially Premixed Combustion of Methane/Air Mixture
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021001
.
8.
Askari
,
O.
,
Metghalchi
,
H.
,
Kazemzadeh Hannani
,
S.
,
Hemmati
,
H.
, and
Ebrahimi
,
R.
,
2014
, “
Lean Partially Premixed Combustion Investigation of Methane Direct-Injection Under Different Characteristic Parameters
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022202
.
9.
Kim
,
J.
,
Chun
,
M.
,
Song
,
S.
,
Baek
,
H.-K.
, and
Lee
,
S. W.
,
2017
, “
The Effects of Hydrogen on the Combustion, Performance and Emissions of a Turbo Gasoline Direct-Injection Engine With Exhaust Gas Recirculation
,”
Int. J. Hydrogen Energy
,
42
(
39
), pp.
25074
25087
.
10.
Cho
,
H. M.
, and
He
,
B.-Q.
,
2006
, “
Spark Ignition Natural Gas Engines—A Review
,”
Energy Convers. Manag.
,
48
(
2
), pp.
608
618
.
11.
Eisazadeh-Far
,
K.
,
Parsinejad
,
F.
,
Metghalchi
,
H.
, and
Keck
,
J. C.
,
2010
, “
On Flame Kernel Formation and Propagation in Premixed Gases
,”
Combust. Flame
,
157
(
12
), pp.
2211
2221
.
12.
Wan
,
H.
,
Gao
,
Z.
,
Ji
,
J.
,
Zhang
,
Y.
, and
Li
,
K.
,
2018
, “
Experimental and Theoretical Study on Flame Front Temperatures Within Ceiling Jets From Turbulent Diffusion Flames of n-Heptane Fuel
,”
Energy
,
164
, pp.
79
86
.
13.
Vasiliev
,
L. L.
,
Burak
,
V. S.
,
Kulakov
,
A. G.
,
Mishkinis
,
D. A.
, and
Bohan
,
P. V.
,
2000
, “
Latent Heat Storage Modules for Preheating Internal Combustion Engines: Application to a Bus Petrol Engine
,”
Appl. Therm. Eng.
,
20
(
10
), pp.
913
923
.
14.
Gritti
,
F.
,
2018
, “
High-Resolution Turbulent Flow Chromatography
,”
J. Chromatogr. A
,
1570
, pp.
135
147
.
15.
Badica
,
P.
,
Batalu
,
D.
,
Burdusel
,
M.
,
Grigoroscuta
,
M. A.
,
Aldica
,
G. V.
,
Enculescu
,
M.
,
Gabor
,
R. A.
,
Wang
,
Z.
,
Huang
,
R.
, and
Li
,
P.
,
2018
, “
Compressive Properties of Pristine and SiC-Te-Added MgB2 Powders, Green Compacts and Spark-Plasma-Sintered Bulks
,”
Ceram. Int.
,
44
(
9
), pp.
10181
10191
.
16.
Szwaja
,
S.
,
Ansari
,
E.
,
Rao
,
S.
,
Szwaja
,
M.
,
Grab-Rogalinski
,
K.
,
Naber
,
J. D.
, and
Pyrc
,
M.
,
2018
, “
Influence of Exhaust Residuals on Combustion Phases, Exhaust Toxic Emission and Fuel Consumption From a Natural Gas Fueled Spark-Ignition Engine
,”
Energy Convers. Manag.
,
165
, pp.
440
446
.
17.
Rincón
,
R.
,
Muñoz
,
J.
, and
Sáez
,
M.
,
2013
, “
Spectroscopic Characterization of Atmospheric Pressure Argon Plasmas Sustained With the Torche à Injection Axiale Sur Guide D'Ondes
,”
Spectrochim. Acta Part B
,
81
, pp.
26
35
.
18.
Caliari
,
F. R.
,
Miranda
,
F. S.
,
Reis
,
D. A. P.
,
Filho
,
G. P.
,
Charakhovski
,
L. I.
, and
Essiptchouk
,
A.
,
2016
, “
Plasma Torch for Supersonic Plasma Spray at Atmospheric Pressure
,”
J. Mater. Process. Technol.
,
237
, pp.
351
360
.
19.
Dalvand
,
E. S.
,
Ebrahimi
,
M.
, and
Pouryoussefi
,
S. G.
,
2018
, “
Experimental Investigation, Modeling and Prediction of Transition From Uniform Discharge to Filamentary Discharge in DBD Plasma Actuators Using Artificial Neural Network
,”
Appl. Therm. Eng.
,
129
, pp.
50
61
.
20.
Duchmann
,
A.
,
Simon
,
B.
,
Tropea
,
C.
, and
Grundmann
,
S.
,
2014
, “
Dielectric Barrier Discharge Plasma Actuators for in-Flight Transition Delay
,”
AIAA J.
,
52
(
2
), pp.
358
367
.
21.
Park
,
J.
,
Henins
,
I.
,
Herrmann
,
H. W.
,
Selwyn
,
G. S.
, and
Hicks
,
R. F.
,
2001
, “
Discharge Phenomena of an Atmospheric Pressure Radio-Frequency Capacitive Plasma Source
,”
J. Appl. Phys.
,
89
(
1
), pp.
20
28
.
22.
Nanto
,
T.
,
Nakahara
,
H.
,
Awaji
,
N.
,
Wakitani
,
M.
,
Shinoda
,
T.
,
Konno
,
K.
,
Yanagibashi
,
Y.
, and
Sakamoto
,
N.
,
1999
, “
Surface Discharge Plasma Display Including Light Shielding Film Between Adjacent Electrode Pairs
,”
IEEE Trans. Ind. Appl.
,
24
(
2
), pp.
223
231
.http://www.freepatentsonline.com/5952782.html
23.
Starikovskii
,
A. Y.
,
Anikin
,
N. B.
,
Kosarev
,
I. N.
,
Mintoussov
,
E. I.
,
Nudnova
,
M. M.
,
Rakitin
,
A. E.
,
Roupassov
,
D. V.
,
Starikovskaia
,
S. M.
, and
Zhukov
,
V. P.
,
2008
, “
Nanosecond-Pulsed Discharges for Plasma-Assisted Combustion and Aerodynamics
,”
J. Propul. Power
,
24
(
6
), pp.
1182
1197
.
24.
Masuda
,
S.
,
Akutsu
,
K.
,
Kuroda
,
M.
,
Awatsu
,
Y.
, and
Shibuya
,
Y.
,
1988
, “
A Ceramic-Based Ozonizer Using High-Frequency Discharge
,”
IEEE Trans. Ind. Appl.
,
24
(
2
), pp.
223
231
.
25.
Askari
,
O.
,
Beretta
,
G. P.
,
Eisazadeh-Far
,
K.
, and
Metghalchi
,
H.
,
2016
, “
On the Thermodynamic Properties of Thermal Plasma in the Flame Kernel of Hydrocarbon/Air Premixed Gases
,”
Eur. Phys. J. D
,
70
, p. 159.
26.
Askari
,
O.
,
2017
, “
Thermodynamic Properties of Pure and Mixed Thermal Plasmas Over a Wide Range of Temperature and Pressure
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032202
.
27.
Salunkhe
,
A. B.
,
Khot
,
V. M.
,
Phadatare
,
M. R.
, and
Pawar
,
S. H.
,
2012
, “
Combustion Synthesis of Cobalt Ferrite Nanoparticles—Influence of Fuel to Oxidizer Ratio
,”
J. Alloys Compd.
,
514
, pp.
91
96
.
28.
Cerny
,
P.
,
Bartos
,
P.
,
Olsan
,
P.
, and
Spatenka
,
P.
,
2019
, “
Hydrophobization of Cotton Fabric by Gliding Arc Plasma Discharge
,”
Curr. Appl. Phys.
,
19
(
2
), pp.
128
136
.
29.
Lee
,
T.
,
Puligundla
,
P.
, and
Mok
,
C.
,
2018
, “
Intermittent Corona Discharge Plasma Jet for Improving Tomato Quality
,”
J. Food Eng.
,
223
, pp.
168
174
.
30.
Murugapandiyan
,
P.
,
Ravimaran
,
S.
, and
William
,
J.
,
2017
, “
DC and Microwave Characteristics of Lg 50 nm T-gate In AlN/AlN/GaN HEMT for Future High Power RF Applications
,”
AEU–Int. J. Electron. Commun.
,
77
, pp.
163
168
.
31.
Chen
,
Q.
,
Sun
,
J.
, and
Zhang
,
X.
,
2018
, “
Kinetic Contribution of CO2/O2 Additive in Methane Conversion Activated by Non-Equilibrium Plasmas
,”
Chin. J. Chem. Eng.
,
26
(
5
), pp.
1041
1050
.
32.
Du
,
H.
,
Wang
,
H.
,
Yao
,
P.
,
Wang
,
J.
, and
Sun
,
Y.
,
2018
, “
In2O3 Nanofibers Surface Modified by Low-Temperature RF Plasma and Their Gas Sensing Properties
,”
Mater. Chem. Phys.
,
215
, pp.
316
326
.
33.
Attrash
,
M.
,
Kuntumalla
,
M. K.
, and
Hoffman
,
A.
,
2019
, “
Bonding, Structural Properties and Thermal Stability of Low Damage RF (N2) Plasma Treated Diamond (100) Surfaces Studied by XPS, LEED, and TPD
,”
Surf. Sci.
,
681
, pp.
95
103
.
34.
Yang
,
J.
,
Yang
,
F.
,
Hua
,
H.
,
Cao
,
Y.
,
Li
,
C.
, and
Fang
,
B.
,
2018
, “
A Bipolar Pulse Power Generator for Micro-EDM
,”
Procedia CIRP
,
68
, pp.
620
624
.
35.
Filimonova
,
E.
,
Bocharov
,
A.
, and
Bityurin
,
V.
,
2018
, “
Influence of a Non-Equilibrium Discharge Impact on the Low Temperature Combustion Stage in the HCCI Engine
,”
Fuel
,
228
, pp.
309
322
.
36.
Nakaya
,
S.
,
Iseki
,
S.
,
Gu
,
X.
,
Kobayashi
,
Y.
, and
Tsue
,
M.
,
2016
, “
Flame Kernel Formation Behaviors in Close Dual-Point Laser Breakdown Spark Ignition for Lean Methane/Air Mixtures
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3441
3449
.
37.
Zhang
,
Z.
, and
Tan
,
X.
,
2012
, “
Review of High Power Pulse Transformer Design
,”
Phys. Procedia
,
32
, pp.
566
574
.
38.
Hwang
,
J.
,
Bae
,
C.
,
Park
,
J.
,
Choe
,
W.
,
Cha
,
J.
, and
Woo
,
S.
,
2016
, “
Microwave-Assisted Plasma Ignition in a Constant Volume Combustion Chamber
,”
Combust. Flame
,
167
, pp.
86
96
.
39.
Poggiani
,
C.
,
Battistoni
,
M.
,
Grimaldi
,
C. N.
, and
Magherini
,
A.
,
2015
, “
Experimental Characterization of a Multiple Spark Ignition System
,”
Energy Procedia
,
82
, pp.
89
95
.
40.
Zhao
,
S.-X.
,
2016
, “
Mode Transition and Hysteresis in Inductively Coupled Plasma Sources
,” Plasma Science and Technology, InTech Open, Rijeka, Croatia.
41.
Starikovskiy
,
A.
, and
Aleksandrov
,
N.
,
2013
, “
Plasma-Assisted Ignition and Combustion
,”
Prog. Energy Combust. Sci.
,
39
(
1
), pp.
61
110
.
42.
Kim
,
K.
, and
Choi
,
D.
,
2018
, “
Thermodynamic Kernel, IMEP, and Response Based on Three Plasma Energies
,”
J. Mech. Sci. Technol.
,
32
(
8
), pp.
3983
3994
.
43.
Bane
,
S. P. M.
,
Shepherd
,
J. E.
,
Kwon
,
E.
, and
Day
,
A. C.
,
2011
, “
Statistical Analysis of Electrostatic Spark Ignition of Lean H2/O2/Ar Mixtures 5
,”
Int. J. Hydrogen Energy
,
36
(
3
), pp.
2344
2350
.
44.
Kinjo
,
T.
,
Senjyu
,
T.
,
Urasaki
,
N.
, and
Fujita
,
H.
,
2006
, “
Output Levelling of Renewable Energy by Electric Double-Layer Capacitor Applied for Energy Storage System
,”
IEEE Trans. Energy Convers.
,
21
(
1
), pp.
221
227
.
45.
Malesani
,
L.
,
Rossetto
,
L.
,
Tenti
,
P.
, and
Tomasin
,
P.
,
1995
, “
AC/DC/AC PWM Converter With Reduced Energy Storage in the DC Link
,”
IEEE Trans. Ind. Appl.
,
31
(
2
), pp.
287
292
.
46.
Miller
,
J. R.
, and
Simon
,
P.
,
2008
, “
Electrochemical Capacitors for Energy Management
,”
Science
,
321
(
5889
), pp. 651–652.
47.
Teymourfar
,
R.
,
Asaei
,
B.
,
Iman-Eini
,
H.
, and
Nejati fard
,
R.
,
2012
, “
Stationary Super-Capacitor Energy Storage System to Save Regenerative Braking Energy in a Metro Line
,”
Energy Convers. Manag.
,
56
, pp.
206
214
.
48.
Zimont
,
V. L.
,
2000
, “
Gas Premixed Combustion at High Turbulence. Turbulent Flame Closure Combustion Model
,”
Exp. Therm. Fluid Sci.
,
21
(
1–3
), pp.
179
186
.
49.
Zimont
,
V.
,
Polifke
,
W.
,
Bettelini
,
M.
, and
Weisenstein
,
W.
,
1998
, “
An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure
,”
ASME J. Eng. Gas Turbines Power
,
120
(
3
), p.
526
.
50.
Zimont
,
V. L.
, and
Trushin
,
Y. M.
,
1969
, “
Total Combustion Kinetics of Hydrocarbon Fuels
,”
Combust. Explos. Shock Waves
,
5
(
4
), pp.
391
394
.
51.
Askari
,
O.
,
Vien
,
K.
,
Wang
,
Z.
,
Sirio
,
M.
, and
Metghalchi
,
H.
,
2016
, “
Exhaust Gas Recirculation Effects on Flame Structure and Laminar Burning Speeds of H2/CO/air Flames at High Pressures and Temperatures
,”
Appl. Energy
,
179
, pp.
451
462
.
52.
Askari
,
O.
,
Moghaddas
,
A.
,
Alholm
,
A.
,
Vein
,
K.
,
Alhazmi
,
B.
, and
Metghalchi
,
H.
,
2016
, “
Laminar Burning Speed Measurement and Flame Instability Study of H2/CO/air Mixtures at High Temperatures and Pressures Using a Novel Multi-Shell Model
,”
Combust. Flames
,
168
, pp.
20
31
.
53.
Roy
,
S.
,
Zare
,
S.
, and
Askari
,
O.
,
2018
, “
Understanding the Effect of Oxygenated Additives on Combustion Characteristics of Gasoline
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022205
.
54.
Yu
,
G.
,
Askari
,
O.
,
Hadi
,
F.
,
Wang
,
Z.
,
Metghalchi
,
H.
,
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2017
, “
Theoretical Prediction of Laminar Burning Speed and Ignition Delay Time of Gas-to-Liquid Fuel
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022202
.
55.
Rokni
,
E.
,
Moghaddas
,
A.
,
Askari
,
O.
, and
Metghalchi
,
H.
,
2015
, “
Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene (C2H2) /Air Mixtures
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012204
.
56.
Askari
,
O.
,
Wang
,
Z.
,
Vien
,
K.
,
Sirio
,
M.
, and
Metghalchi
,
H.
,
2017
, “
On the Flame Stability and Laminar Burning Speeds of Syngas/O2/He Premixed Flame
,”
J. Fuel
,
190
, pp.
90
103
.
57.
Yu
,
G.
,
Askari
,
O.
, and
Metghalchi
,
H.
,
2017
, “
Theoretical Prediction of the Effect of Blending JP-8 With Syngas on the Ignition Delay Time and Laminar Burning Speed
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012204
.
58.
Yu
,
G.
,
Metghalchi
,
H.
,
Askari
,
O.
, and
Wang
,
Z.
,
2018
, “
Combustion Simulation of Propane/Oxygen (With Nitrogen/Argon) Mixtures Using Rate-Controlled Constrained-Equilibrium
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022204
.
59.
Askari
,
O.
,
Elia
,
M.
,
Ferrari
,
M.
, and
Metghalchi
,
H.
,
2017
, “
Cell Formation Effects on the Burning Speeds and Flame Front Area of Synthetic Gas at High Pressures and Temperatures
,”
Appl. Energy
,
189
, pp.
568
577
.
60.
Askari
,
O.
,
Elia
,
M.
,
Ferrari
,
M.
, and
Metghalchi
,
H.
,
2017
, “
Auto-Ignition Characteristics Study of Gas-to-Liquid Fuel at High Pressures and Low Temperatures
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012204
.
61.
Zimont
,
V. L.
,
1979
, “
Theory of Turbulent Combustion of a Homogeneous Fuel Mixture at High Reynolds Numbers
,”
Combust. Explos. Shock Waves
,
15
(
3
), pp.
305
311
.
62.
Zimont
,
V. L.
, and
Biagioli
,
F.
,
2002
, “
Gradient, Counter-Gradient Transport and Their Transition in Turbulent Premixed Flames
,”
Combust. Theory Model.
,
6
(
1
), pp.
79
101
.
63.
Lipatnikov
,
A. N.
, and
Chomiak
,
J.
,
2002
, “
Turbulent Flame Speed and Thickness: Phenomenology, Evaluation, and Application in Multi-Dimensional Simulations
,”
Prog. Energy Combust. Sci.
,
28
(
1
), pp.
1
74
.
64.
Karpov
,
V.
,
Lipatnikov
,
A.
, and
Imont
,
V.
,
1996
, “
A Test of an Engineering Model of Premixed Turbulent Combustion
,”
Symp. Combust.
,
26
(
1
), pp.
249
257
.
65.
Zimont
,
V. L.
,
Biagioli
,
F.
, and
Syed
,
K.
,
2001
, “
Modelling Turbulent Premixed Combustion in the Intermediate Steady Propagation Regime
,”
Prog. Comput. Fluid Dyn.
,
1
(
1/2/3
), p.
14
.
66.
Zimont
,
V. L.
,
2015
, “
Theoretical Study of Self-Ignition and Quenching Limits in a Catalytic Micro-Structured Burner and Their Sensitivity Analysis
,”
Chem. Eng. Sci.
,
134
, pp.
800
812
.
67.
Jaojaruek
,
K.
,
2014
, “
Mathematical Model to Predict Temperature Profile and Air–Fuel Equivalence Ratio of a Downdraft Gasification Process
,”
Energy Convers. Manag.
,
83
, pp.
223
231
.
68.
Nakamura
,
N.
,
Baika
,
T.
, and
Shibata
,
Y.
,
1985
, “
Multipoint Spark Ignition for Lean Combustion
,”
SAE Trans.
,
94
, pp.
611
620
.
69.
Zervas
,
E.
,
Montagne
,
X.
,
Lahaye
,
J.
,
2002
, “
Emission of Alcohols and Carbonyl Compounds From a Spark Ignition Engine. Influence of Fuel and Air/Fuel Equivalence Ratio
,”
Environ. Sci. Technol.
,
36
(
11
), pp.
2414
2421
.
You do not currently have access to this content.