This work investigates the performance of film-cooling on trailing edge of gas turbine blades using unsteady three-dimensional numerical model adopting large eddy simulation (LES) turbulence scheme in a low Mach number flow regime. This study is concerned with the scaling parameters affecting effectiveness and heat transfer performance on the trailing edge, as a critical design parameter, of gas turbine blades. Simulations were performed using ANSYS-fluentworkbench 17.2. High quality mesh was adapted, whereas the size of cells adjacent to the wall was optimized carefully to sufficiently resolve the boundary layer to obtain insight predictions of the film-cooling effectiveness on a flat plate downstream the slot opening. Blowing ratio, density ratio, Reynolds number, and the turbulence intensity of the mainstream and coolant flow are optimally examined against the film-cooling effectiveness. The predicted results showed a great agreement when compared with the experiments. The results show a distinctive behavior of the cooling effectiveness with blowing ratio variation as it has a dip in vicinity of unity which is explained by the behavior of the vortex entrainment and momentum of coolant flow. The negative effect of the turbulence intensity on the cooling effectiveness is demonstrated as well.

References

1.
Khalil
,
A. E. E.
, and
Gupta
,
A. K.
,
2013
, “
Dual Injection Distributed Combustion for Gas Turbine Application
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
011601
.
2.
Emami
,
M. D.
,
Shahbazian
,
H.
, and
Sunden
,
B.
,
2018
, “
Effect of Operational Parameters on Combustion and Emissions in an Industrial Gas Turbine Combustor
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012202
.
3.
MacPhee
,
D. W.
, and
Beyene
,
A.
,
2017
, “
Impact of Air Quality and Site Selection on Gas Turbine Engine Performance
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020903
.
4.
Khadse
,
A.
,
Blanchette
,
L.
,
Kapat
,
J.
,
Vasu
,
S.
,
Hossain
,
J.
, and
Donazzolo
,
A.
,
2018
, “
Optimization of Supercritical CO2 Brayton Cycle for Simple Cycle Gas Turbines Exhaust Heat Recovery Using Genetic Algorithm
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
071601
.
5.
Masci
,
R.
, and
Sciubba
,
E.
,
2017
, “
A Lumped Thermodynamic Model of Gas Turbine Blade Cooling: Prediction of First-Stage Blades Temperature and Cooling Flow Rates
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020901
.
6.
Forghan
,
F.
,
Askari
,
O.
,
Narusawa
,
U.
, and
Metghalchi
,
H.
,
2017
, “
Cooling of Turbine Blades With Expanded Exit Holes: Computational Analyses of Leading Edge and Pressure-Side of a Turbine Blade
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042004
.
7.
Forghan
,
F.
,
Askari
,
O.
,
Narusawa
,
U.
, and
Metghalchi
,
H.
,
2016
, “
Cooling of Turbine Blade Surface With Expanded Exit Holes: Computational Suction-Side Analysis
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
051602
.
8.
Taslim
,
M. E.
,
Spring
,
S. D.
, and
Mehlman
,
B. P.
,
1992
, “
Experimental Investigation of Film Cooling Effectiveness for Slots of Various Exit Geometries
,”
J. Thermophys. Heat Transfer
,
6
(
2
), pp.
302
307
.
9.
Horbach
,
T.
,
Schulz
,
A.
, and
Bauer
,
H. J.
,
2010
, “
Trailing Edge Film Cooling of Gas Turbine Airfoils-Effects of Ejection Lip Geometry on Film Cooling Effectiveness and Heat Transfer
,”
Heat Transfer Res.
,
41
(
8
), pp.
849
865
.
10.
Kacker
,
S. C.
, and
Whitelaw
,
J. H.
,
1969
, “
An Experimental Investigation of the Influence of Slot-Lip-Thickness on the Impervious-Wall Effectiveness of the Uniform-Density, Two-Dimensional Wall Jet
,”
Int. J. Heat Mass Transfer
,
12
(
9
), pp.
1196
1201
.
11.
Cakan
,
M.
, and
Taslim
,
M. E.
,
2007
, “
Experimental and Numerical Study of Mass/Heat Transfer on an Airfoil Trailing-Edge Slots and Lands
,”
ASME J. Turbomach.
,
129
(
2
), pp.
281
293
.
12.
Ling
,
J.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2015
, “
The Effect of Land Taper Angle on Trailing Edge Slot Film Cooling
,”
ASME J. Turbomach.
,
137
(
7
), p.
071003
.
13.
Murata
,
A.
,
Nishida
,
S.
,
Saito
,
H.
,
Iwamoto
,
K.
,
Okita
,
Y.
, and
Nakamata
,
C.
,
2012
, “
Effects of Surface Geometry on Film Cooling Performance at Airfoil Trailing Edge
,”
ASME J. Turbomach.
,
134
(
5
), p.
051033
.
14.
Cunha
,
F. J.
, and
Chyu
,
M. K.
,
2006
, “
Trailing-Edge Cooling for Gas Turbines
,”
J. Propul. Power
,
22
(
2
), pp.
286
300
.
15.
Hartnett
,
J. P.
,
Birkebak
,
R. C.
, and
Eckert
,
E. R. G.
,
1961
, “
Velocity Distributions, Temperature Distributions, Effectiveness and Heat Transfer for Air Injected Through a Tangential Slot Into a Turbulent Boundary Layer
,”
ASME J. Heat Transfer
,
83
(
3
), pp.
293
305
.
16.
Holloway
,
D. S.
,
Leylek
,
J. H.
, and
Buck
,
F. A.
,
2002
, “
Pressure-Side Bleed Film Cooling: Part I—Steady Framework for Experimental and Computational Results
,”
ASME
Paper No. GT2002-30471.
17.
Holloway
,
D. S.
,
Leylek
,
J. H.
, and
Buck
,
F. A.
,
2002
, “
Pressure-Side Bleed Film Cooling: Part II—Unsteady Framework for Experimental and Computational Results
,”
ASME
Paper No. GT2002-30472.
18.
Mehlman
,
B. P.
,
1990
, “
Experimental Slot Film Cooling Effectiveness Measurements for Varying Injection Angles in Accelerating and Non-Accelerating Flows
,” Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA.
19.
Schneider
,
H.
,
Terzi
,
D. V.
, and
Bauer
,
H. J.
,
2010
, “
Large-Eddy Simulations of Trailing-Edge Cutback Film Cooling at Low Blowing Ratio
,”
Int. J. Heat Fluid Flow
,
31
(
5
), pp.
767
775
.
20.
Medic
,
G.
, and
Durbin
,
P. A.
,
2005
, “
Unsteady Effects on Trailing Edge Cooling
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
388
392
.
21.
Benson
,
M. J.
,
Elkins
,
C. J.
,
Yapa
,
S. D.
,
Ling
,
J. B.
, and
Eaton
,
J. K.
,
2012
, “
Effects of Varying Reynolds Number, Blowing Ratio, and Internal Geometry on Trailing Edge Cutback Film Cooling
,”
Exp. Fluids
,
52
(
6
), pp.
1415
1430
.
22.
Rehder
,
H. J.
,
2009
, “
Investigation of Trailing Edge Cooling Concepts in a High-Pressure Turbine Cascade: Aerodynamic Experiments and Loss Analysis
,”
ASME J. Turbomach.
,
134
(
5
), pp.
301
310
.
23.
Yang
,
Z.
, and
Hu
,
H.
,
2012
, “
An Experimental Investigation on the Trailing Edge Cooling of Turbine Blades
,”
Propul. Power Res.
,
1
(
1
), pp.
36
47
.
24.
He
,
K.
,
2017
, “
Investigations of Film Cooling and Heat Transfer on a Turbine Blade Squealer Tip
,”
Appl. Therm. Eng.
,
110
, pp.
630
647
.
25.
Yan
,
X.
,
Huang
,
Y.
, and
He
,
K.
,
2017
, “
Investigations Into Heat Transfer and Film Cooling Effect on a Squealer-Winglet Blade Tip
,”
Int. J. Heat Mass Transfer
,
115
, pp.
955
978
.
26.
Effendy
,
M.
,
Yao
,
Y. F.
,
Yao
,
J.
, and
Marchant
,
D. R.
,
2016
, “
DES Study of Blade Trailing Edge Cutback Cooling Performance With Various Lip Thicknesses
,”
Appl. Therm. Eng.
,
99
, pp.
434
445
.
27.
Mousavi
,
S. M.
,
Ghadimi
,
B.
, and
Kowsary
,
F.
,
2018
, “
Numerical Study on the Effects of Multiple Inlet Slot Configurations on Swirl Cooling of a Gas Turbine Blade Leading Edge
,”
Int. Commun. Heat Mass Transfer
,
90
, pp.
34
43
.
You do not currently have access to this content.