This research investigated the effects of the specific primary (under-fire) air flowrate (m˙air) on the combustion behavior of a 50–50 wt % blend of raw corn straw (CS) and raw pinewood wastes in a fixed-bed reactor. This parameter was varied in the range of 0.079–0.226 kg m−2 s−1, which changed the overall combustion stoichiometry from air-lean (excess air coefficient λ = 0.73) to air-rich (excess air coefficient λ = 1.25) and affected the combustion efficiency and stability as well as the emissions of hazardous pollutants. It was observed that by increasing m˙air, the ignition delay time first increased and then decreased, the average bed temperatures increased, both the average flame propagation rates and the fuel burning rates increased, and the combustion efficiencies also increased. The emissions of CO as well as those of cumulative gas phase nitrogen compounds increased, the latter mostly because of increasing HCN, while those of NO were rather constant. The emissions of HCl decreased but those of other chlorine-containing species increased. The effect of m˙air on the conversion of sulfur to SO2 was minor. By considering all of the aforesaid factors, a mildly overall air-rich (fuel-lean) (λ = 1.04) operating condition can be suggested for corn-straw/pinewood burning fixed-bed grate-fired reactors.

References

1.
EIA, 2018, “
EIA Expects Total U.S. Fossil Fuel Production to Reach Record Levels in 2018 and 2019
,” U.S. Energy Information Administration, Washington DC, accessed Jan. 18, 2018, https://www.eia.gov/todayinenergy/detail.php?id=34572
2.
Rokni
,
E.
,
Panahi
,
A.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2016
, “
Reduction of Sulfur Dioxide Emissions by Burning Coal Blends
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032204
.
3.
Rokni
,
E.
,
Hsein Chi
,
H.
, and
Levendis
,
Y. A.
,
2017
, “
In-Furnace Sulfur Capture by Cofiring Coal With Alkali-Based Sorbents
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042204
.
4.
OECD/IEA
,
2016
, “
World Energy Outlook 2016
,” International Energy Agency, Executive, Paris, France,
Report
.https://webstore.iea.org/world-energy-outlook-2016
5.
Buckley
,
C.
, 2017, “
China's Role in Climate Change, and Possibly in Fighting It
,” New York Times, New York, accessed June 2, 2017, https://www.nytimes.com/2017/06/02/world/asia/chinas-role-in-climate-change-and-possibly-in-fighting-it.html
6.
Chen
,
X.
,
2016
, “
Economic Potential of Biomass Supply From Crop Residues in China
,”
Appl. Energy
,
166
, pp.
141
149
.
7.
Gao
,
X.
,
Zhang
,
Y.
,
Li
,
B.
,
Xie
,
G.
, and
Zhao
,
W.
,
2018
, “
Experimental Investigation Into the Characteristics of Chars Obtained From Fast Pyrolysis of Different Biomass Fuels
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
044501
.
8.
Ren
,
X.
,
Sun
,
R.
,
Meng
,
X.
,
Vorobiev
,
N.
,
Schiemann
,
M.
, and
Levendis
,
Y. A.
,
2017
, “
Carbon, Sulfur and Nitrogen Oxide Emissions From Combustion of Pulverized Raw and Torrefied Biomass
,”
Fuel
,
188
, pp.
310
323
.
9.
Wladyslaw
,
M.
,
2017
, “
Co-Combustion of Pulverized Coal and Biomass in Fluidized Bed of Furnace
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062204
.
10.
Tumuluru
,
J. S.
,
Sokhansanj
,
S.
,
Wright
,
C. T.
,
Boardman
,
R. D.
, and
Yancey
,
N. A.
,
2011
, “
A Review on Biomass Classification and Composition, Co-Firing Issues and Pretreatment Methods
,”
Biofuels Bioprod. Biorefin.
,
5
(
6
), pp.
683
707
.
11.
Huang, J., 2014, “
For a Green Future: An Overview of Biomass Energy in China
,” Renewable Energy World, accessed Nov. 26, 2018, https://www.renewableenergyworld.com/ugc/articles/2014/07/for-a-green-future-an-overview-of-biomass-energy-in-china.html
12.
IEA
,
2016
, “
World Energy Outlook 2016
,” U.S. Department of Energy, Washington, DC, accessed Nov. 26, 2018, https://www.eia.gov/outlooks/ieo/pdf/0484(2016).pdf
13.
Porteiro
,
J.
,
Patiño
,
D.
,
Collazo
,
J.
,
Granada
,
E.
,
Moran
,
J.
, and
Miguez
,
J. L.
,
2010
, “
Experimental Analysis of the Ignition Front Propagation of Several Biomass Fuels in a Fixed-Bed Combustor
,”
Fuel
,
89
(
1
), pp.
26
35
.
14.
Yang
,
Y. B.
,
Ryu
,
C.
,
Khor
,
A.
,
Sharifi
,
V. N.
, and
Swithenbank
,
J.
,
2005
, “
Fuel Size Effect on Pinewood Combustion in a Packed Bed
,”
Fuel
,
84
(
16
), pp.
2026
2038
.
15.
Meng
,
X.
,
Sun
,
R.
,
Zhou
,
W.
,
Liu
,
X.
,
Yan
,
Y.
, and
Ren
,
X.
,
2018
, “
Effects of Corn Ratio With Pine on Biomass Co-Combustion Characteristics in a Fixed Bed
,”
Appl. Therm. Eng.
,
142
, pp.
30
42
.
16.
Mandø
,
M.
,
2013
,
Biomass Combustion Science, Technology and Engineering
(Woodhead Publishing Series in Energy), Woodhead Publishing, Oxford, UK, pp.
61
83
.
17.
Khodaei
,
H.
,
Al-Abdeli
,
Y. M.
,
Guzzomi
,
F.
, and
Yeoh
,
G. H.
,
2015
, “
An Overview of Processes and Considerations in the Modelling of Fixed-Bed Biomass Combustion
,”
Energy
,
88
, pp.
946
972
.
18.
Saastamoinen
,
J. J.
,
Taipale
,
R.
,
Horttanainen
,
M.
, and
Sarkomaa
,
P.
,
2000
, “
Propagation of the Ignition Front in Beds of Wood Particles
,”
Combust. Flame
,
123
(
1–2
), pp.
214
226
.
19.
Yin
,
C.
,
Rosendahl
,
L. A.
, and
Kær
,
S. K.
,
2008
, “
Grate-Firing of Biomass for Heat and Power Production
,”
Prog. Energy Combust. Sci.
,
34
(
6
), pp.
725
754
.
20.
Porteiro
,
J.
,
Patiño
,
D.
,
Miguez
,
J. L.
,
Granada
,
E.
,
Moran
,
J.
, and
Collazo
,
J.
,
2012
, “
Study of the Reaction Front Thickness in a Counter-Current Fixed-Bed Combustor of a Pelletised Biomass
,”
Combust. Flame
,
159
(
3
), pp.
1296
1302
.
21.
Fournel
,
S.
,
Palacios
,
J. H.
,
Morissette
,
R.
,
Villeneuve
,
J.
,
Godbout
,
S.
,
Heitz
,
M.
, and
Savoie
,
P.
,
2015
, “
Influence of Biomass Properties on Technical and Environmental Performance of a Multi-Fuel Boiler During on-Farm Combustion of Energy Crops
,”
Appl. Energy
,
141
, pp.
247
259
.
22.
Romeo
,
L. M.
, and
Gareta
,
R.
,
2009
, “
Fouling Control in Biomass Boilers
,”
Biomass Bioenergy
,
33
(
5
), pp.
854
861
.
23.
Yang
,
Y. B.
,
Sharifi
,
V. N.
, and
Swithenbank
,
J.
,
2004
, “
Effect of Air Flow Rate and Fuel Moisture on the Burning Behaviours of Biomass and Simulated Municipal Solid Wastes in Packed Beds
,”
Fuel
,
83
(
11–12
), pp.
1553
1562
.
24.
Ren
,
X.
,
Meng
,
X.
,
Panahi
,
A.
,
Rokni
,
E.
,
Sun
,
R.
, and
Levendis
,
Y. A.
,
2017
, “
Hydrogen Chloride Release From Combustion of Corn Straw in a Fixed Bed
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
051801
.
25.
Horttanainen
,
M.
,
Saastamoinen
,
J.
, and
Sarkomaa
,
P.
,
2002
, “
Operational Limits of Ignition Front Propagation Against Airflow in Packed Beds of Different Wood Fuels
,”
Energy Fuels
,
16
(
3
), pp.
676
686
.
26.
Meng
,
X.
,
Sun
,
R.
,
Liu
,
X.
,
Ismail
,
T. M.
,
Zhou
,
W.
,
El-Salam
,
M. A.
, and
Ren
,
X.
,
2018
, “
Assessment of Chopped Corn Straw Lengths for Combustion in a Fixed Bed Using a Numerical Model
,”
Energy Fuels
,
32
(
4
), pp.
5187
5198
.
27.
Meng
,
X.
,
Sun
,
R.
,
Ismail
,
T. M.
,
El-Salam
,
M. A.
,
Zhou
,
W.
,
Zhang
,
R.
, and
Ren
,
X.
,
2018
, “
Assessment of Primary Air on Corn Straw in a Fixed Bed Combustion Using Eulerian-Eulerian Approach
,”
Energy
,
151
, pp.
501
519
.
28.
Zhao
,
W.
,
Li
,
Z.
,
Wang
,
D.
,
Zhu
,
Q.
,
Sun
,
R.
,
Meng
,
B.
, and
Zhao
,
G.
,
2008
, “
Combustion Characteristics of Different Parts of Corn Straw and NO Formation in a Fixed Bed
,”
Bioresour. Technol.
,
99
(
8
), pp.
2956
2963
.
29.
Zhou
,
H.
,
Jensen
,
A. D.
,
Glarborg
,
P.
,
Jensen
,
P. A.
, and
Kavaliauskas
,
A.
,
2005
, “
Numerical Modeling of Straw Combustion in a Fixed Bed
,”
Fuel
,
84
(
4
), pp.
389
403
.
30.
Mitchell
,
E. J. S.
,
Lea-Langton
,
A. R.
,
Jones
,
J. M.
,
Williams
,
A.
,
Layden
,
P.
, and
Johnson
,
R.
,
2016
, “
The Impact of Fuel Properties on the Emissions From the Combustion of Biomass and Other Solid Fuels in a Fixed Bed Domestic Stove
,”
Fuel Process. Technol.
,
142
, pp.
115
123
.
31.
Houshfar
,
E.
,
Skreiberg
,
Ø.
,
Todorović
,
D.
,
Skreiberg
,
A.
,
Løvås
,
T.
,
Jovović
,
A.
, and
Sørum
,
L.
,
2012
, “
NOx Emission Reduction by Staged Combustion in Grate Combustion of Biomass Fuels and Fuel Mixtures
,”
Fuel
,
98
, pp.
29
40
.
32.
Rokni
,
E.
,
Liu
,
Y.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2018
, “
Nitrogen-Bearing Emissions From Burning Corn Straw in a Fixed Bed Reactor: Effect of Fuel Moisture, Torrefaction and Air Flowrate
,”
J. Energy Resour. Technol.
, (accepted).
33.
Shin
,
D.
, and
Choi
,
S.
,
2000
, “
The Combustion of Simulated Waste Particles in a Fixed Bed
,”
Combust. Flame
,
121
(
1–2
), pp.
167
180
.
34.
Van Der Lans
,
R. P.
,
Pedersen
,
L. T.
,
Jensen
,
A.
,
Glarborg
,
P.
, and
Dam-Johansen
,
K.
,
2000
, “
Modelling and Experiments of Straw Combustion in a Grate Furnace
,”
Biomass Bioenergy
,
19
(
3
), pp.
199
208
.
35.
Meng
,
X.
,
Sun
,
R.
,
Ismail
,
T. M.
,
Zhou
,
W.
,
Ren
,
X.
, and
Zhang
,
R.
,
2018
, “
Parametric Studies on Corn Straw Combustion Characteristics in a Fixed Bed: Ash and Moisture Content
,”
Energy
,
158
, pp.
192
203
.
36.
Meng
,
X.
,
Sun
,
R.
,
Yuan
,
H.
,
Zhou
,
W.
,
Ren
,
X.
, and
Zhang
,
R.
,
2017
, “
Effect of Different Pyrolysis Temperature on Alkali Metal K and Na Emission and Existence in Semi-Char
,”
Huagong Xuebao/CIESC J.
,
68
(
4
), pp.
1600
1607
.http://www.hgxb.com.cn/CN/article/searchArticleResultByKeyword.do#
37.
Liang
,
L.
,
Sun
,
R.
,
Fei
,
J.
,
Wu
,
S.
,
Liu
,
X.
,
Dai
,
K.
, and
Yao
,
N.
,
2008
, “
Experimental Study on Effects of Moisture Content on Combustion Characteristics of Simulated Municipal Solid Wastes in a Fixed Bed
,”
Bioresour. Technol.
,
99
(
15
), pp.
7238
7246
.
38.
Ryu
,
C.
,
Yang
,
Y. B.
,
Khor
,
A.
,
Yates
,
N. E.
,
Sharifi
,
V. N.
, and
Swithenbank
,
J.
,
2006
, “
Effect of Fuel Properties on Biomass Combustion—Part I: Experiments—Fuel Type, Equivalence Ratio and Particle Size
,”
Fuel
,
85
(
7–8
), pp.
1039
1046
.
39.
Ryu
,
C.
,
Phan
,
A. N.
,
Yang
,
Y. B.
,
Sharifi
,
V. N.
, and
Swithenbank
,
J.
,
2007
, “
Ignition and Burning Rates of Segregated Waste Combustion in Packed Beds
,”
Waste Manage.
,
27
(
6
), pp.
802
810
.
40.
Vyas
,
A.
,
Chellappa
,
T.
, and
Goldfarb
,
J. L.
,
2017
, “
Porosity Development and Reactivity Changes of Coal-Biomass Blends During Co-Pyrolysis at Various Temperatures
,”
J. Anal. Appl. Pyrolysis
,
124
, pp.
79
88
.
41.
Bryden
,
K. M.
, and
Ragland
,
K. W.
,
1996
, “
Numerical Modeling of a Deep, Fixed Bed Combustor
,”
Energy Fuels
,
10
(
3
), pp.
269
275
.
42.
Obaidullah
,
M.
, and
Bram
,
S.
,
2012
, “
A Review on Particle Emissions From Small Scale Biomass Combustion
,”
Int. J. Renewable Energy Res.
,
2
(
1
), pp.
147
159
.http://www.ijrer.com/index.php/ijrer/article/view/147
43.
Zhao
,
B.
,
Su
,
Y.
,
Liu
,
D.
,
Zhang
,
H.
,
Liu
,
W.
, and
Cui
,
G.
,
2016
, “
SO2/NOx Emissions and Ash Formation From Algae Biomass Combustion: Process Characteristics and Mechanisms
,”
Energy
,
113
, pp.
821
830
.
44.
Glarborg
,
P.
,
Jensen
,
A. D.
, and
Johnsson
,
J. E.
,
2003
, “
Fuel Nitrogen Conversion in Solid Fuel Fired Systems
,”
Prog. Energy Combust. Sci.
,
29
(
2
), pp.
89
113
.
45.
Ren
,
X.
,
Rokni
,
E.
,
Sun
,
R.
,
Meng
,
X.
, and
Levendis
,
Y. A.
,
2017
, “
Evolution of Chlorine-Bearing Gases During Corn Straw Torrefaction at Different Temperatures
,”
Energy Fuels
,
31
(
12
), pp. 13713–13723.
46.
Díaz-Ramírez
,
M.
,
Sebastián
,
F.
,
Royo
,
J.
, and
Rezeau
,
A.
,
2014
, “
Influencing Factors on NOX Emission Level During Grate Conversion of Three Pelletized Energy Crops
,”
Appl. Energy
,
115
, pp.
360
373
.
47.
Xie
,
J.-S.
,
Cheng
,
S.-Q.
,
Zhang
,
H.-M.
, and
Zhang
,
H.-R.
,
2012
, “
Experimental Study on SO2 Emission Characteristics of Coal Blending With Biomass in O2/CO2 Atmosphere
,”
Boiler Technol.
,
43
(5), pp. 74–78.http://en.cnki.com.cn/Article_en/CJFDTotal-GLJS201205017.htm
48.
Saleh
,
S. B.
,
Flensborg
,
J. P.
,
Shoulaifar
,
T. K.
,
Sárossy
,
Z.
,
Hansen
,
B. B.
,
Egsgaard
,
H.
,
Demartini
,
N.
,
Jensen
,
P. A.
,
Glarborg
,
P.
, and
Dam-Johansen
,
K.
,
2014
, “
Release of Chlorine and Sulfur During Biomass Torrefaction and Pyrolysis
,”
Energy Fuels
,
28
(
6
), pp.
3738
3746
.
49.
Aho
,
M.
,
Paakkinen
,
K.
, and
Taipale
,
R.
,
2013
, “
Destruction of Alkali Chlorides Using Sulphur and Ferric Sulphate During Grate Combustion of Corn Stover and Wood Chip Blends
,”
Fuel
, 103, pp.
562
569
.
50.
Johansen
,
J. M.
,
Jakobsen
,
J. G.
,
Frandsen
,
F. J.
, and
Glarborg
,
P.
,
2011
, “
Release of K, Cl, and S During Pyrolysis and Combustion of High-Chlorine Biomass
,”
Energy Fuels
,
25
(
11
), pp.
4961
4971
.
51.
Pedersen
,
A. J.
,
Van Lith
,
S. C.
,
Frandsen
,
F. J.
,
Steinsen
,
S. D.
, and
Holgersen
,
L. B.
,
2010
, “
Release to the Gas Phase of Metals, S and Cl During Combustion of Dedicated Waste Fractions
,”
Fuel Process. Technol.
,
91
(
9
), pp.
1062
1072
.
You do not currently have access to this content.