In hot and humid climates, air conditioning is an energy-intensive process due to the latent heat load. A unitary air conditioner system is proposed, here, to reduce the latent heat of the humid air using a liquid desiccant followed by an evaporative cooling system. The heat liberated by the desiccant is removed by a solution to the solution heat exchanger. To restore the concentration of the liquid desiccant, the desiccant solution is regenerated by any low-temperature heat source such as solar energy. In order to make the system compact, the membrane heat exchanger is used for the dehumidifier and regenerator. This paper presents the numerical investigation of heat and mass transfer characteristics of a selected membrane dehumidifier under different climatic parameters. Membrane-based parallel-plate and hollow-fiber exchangers are used for this application. A parallel-plate heat-and-mass exchanger (contactor) is composed of a series of plate-type membrane sheets to form channels. On the other hand, hollow-fiber membranes are packed in a shell to form a shell-and-tube heat-and-mass exchanger. The two streams of both contactors are in a counter parallel flow, separated by micro-porous semi-permeable hydrophobic membranes. In this research, the equations governing the transport of heat and mass between the two streams along with the membrane effect in both contactors are solved numerically. The results are compared at different number-of-transfer units (NTU) on the airside and thermal capacity ratios. It is found that the hollow fiber is more efficient than the parallel plate.

References

1.
Zhang
,
L.-Z.
,
2012
, “
Progress on Heat and Moisture Recovery With Membranes: From Fundamentals to Engineering Applications
,”
Energy Convers. Manage.
,
63
, pp.
173
195
.
2.
Grossman
,
G.
, and
Johannsen
,
A.
,
1981
, “
Solar Cooling and Air Conditioning
,”
Prog. Energy Combust. Sci.,
7
(
3
), pp.
185
228
.
3.
Babakhani
,
D.
, and
Soleymani
,
M.
,
2009
, “
An Analytical Solution for Air Dehumidification by Liquid Desiccant in a Packed Column
,”
Int. Commun. Heat Mass Transfer
,
36
(
9
), pp.
969
977
.
4.
Liu
,
X. H.
,
Jiang
,
Y.
, and
Qu
,
K. Y.
,
2007
, “
Heat and Mass Transfer Model of Cross Flow Liquid Desiccant Air Dehumidifier/Regenerator
,”
Energy Convers. Manage.
,
48
(
2
), pp.
546
554
.
5.
Kumar
,
R.
,
Dhar
,
P. L.
, and
Jain
,
S.
,
2011
, “
Development of New Wire Mesh Packings for Improving the Performance of Zero Carryover Spray Tower
,”
Energy
,
36
(
2
), pp.
1362
1374
.
6.
Goula
,
A. M.
, and
Adamopoulos
,
K. G.
,
2005
, “
Spray Drying of Tomato Pulp in Dehumidified Air: I. The Effect on Product Recovery
,”
J. Food Eng.
,
66
(
1
), pp.
25
34
.
7.
Kim
,
M.-H.
,
Park
,
J.-Y.
, and
Jeong
,
J.-W.
,
2015
, “
Simplified Model for Packed-Bed Tower Regenerator in a Liquid Desiccant System
,”
Appl. Therm. Eng.
,
89
, pp.
717
726
.
8.
Ali
,
A.
,
Vafai
,
K.
, and
Khaled
,
A.-R.A.
,
2004
, “
Analysis of Heat and Mass Transfer Between air and Falling Film in a Cross Flow Configuration
,”
Int. J. Heat Mass Transfer
,
47
(
4
), pp.
743
755
.
9.
Kim
,
K.
,
Berman
,
N.
,
Chau
,
D. S.
, and
Wood
,
B.
,
1995
, “
Absorption of Water Vapour Into Falling Films of Aqueous Lithium Bromide
,”
Int. J. Refrig.
,
18
(
7
), pp.
486
494
.
10.
Mahmud
,
K.
,
Mahmood
,
G. I.
,
Simonson
,
C. J.
, and
Besant
,
R. W.
,
2010
, “
Performance Testing of a Counter-Cross-Flow run-Around Membrane Energy Exchanger (RAMEE) System for HVAC Applications
,”
Energy Build.
,
42
(
7
), pp.
1139
1147
.
11.
Larson
,
M.
,
Simonson
,
C.
,
Besant
,
R.
, and
Gibson
,
P.
,
2007
, “
The Elastic and Moisture Transfer Properties of Polyethylene and Polypropylene Membranes for Use in Liquid-to-Air Energy Exchangers
,”
J. Membr. Sci.
,
302
(
1–2
), pp.
136
149
.
12.
Bergero
,
S.
, and
Chiari
,
A.
,
2001
, “
Experimental and Theoretical Analysis of Air Humidification/Dehumidification Processes Using Hydrophobic Capillary Contactors
,”
Appl. Therm. Eng.
,
21
(
11
), pp.
1119
1135
.
13.
Kneifel
,
K.
,
Nowak
,
S.
,
Albrecht
,
W.
,
Hilke
,
R.
,
Just
,
R.
, and
Peinemann
,
K.
,
2006
, “
Hollow-Fiber Membrane Contactor for Air Humidity Control: Modules and Membranes
,”
J. Membr. Sci.
,
276
(
1–2
), pp.
241
251
.
14.
Johnson
,
D. W.
,
Yavuzturk
,
C.
, and
Pruis
,
J.
,
2003
, “
Analysis of Heat and Mass Transfer Phenomena in Hollow-Fiber Membranes Used for Evaporative Cooling
,”
J. Membr. Sci.
,
227
(
1–2
), pp.
159
171
.
15.
Vali
,
A.
,
Ge
,
G.
,
Besant
,
R. W.
, and
Simonson
,
C. J.
,
2015
, “
Numerical Modeling of Fluid Flow and Coupled Heat and Mass Transfer in a Counter-Cross-Flow Parallel-Plate Liquid-to-Air Membrane Energy Exchanger
,”
Int. J. Heat Mass Transfer
,
89
, pp.
1258
1276
.
16.
Huang
,
S.-M.
,
Zhang
,
L.-Z.
,
Tang
,
K.
, and
Pei
,
L.-X.
,
2012
, “
Fluid Flow and Heat Mass Transfer in Membrane Parallel-Plates Channels Used for Liquid Desiccant air Dehumidification
,”
Int. J. Heat Mass Transfer
,
55
(
9–10
), pp.
2571
2580
.
17.
Huang
,
S.-M.
,
Hong
,
Y.
, and
Qin
,
F. G. F.
,
2016
, “
Fluid Flow and Heat Transfer in Hexagonal Parallel-Plate Membrane Channels (HPMC): Effects of the Channel Heights and Fluid Parameters
,”
Appl. Therm. Eng.
,
93
, pp.
8
14
.
18.
Das
,
R. S.
, and
Jain
,
S.
,
2015
, “
Performance Characteristics of Cross-Flow Membrane Contactors for Liquid Desiccant Systems
,”
Appl. Energy
,
141
, pp.
1
11
.
19.
Huang
,
S.-M.
,
Yang
,
M.
, and
Yang
,
X.
,
2014
, “
Performance Analysis of a Quasi-Counter Flow Parallel-Plate Membrane Contactor Used for Liquid Desiccant Air Dehumidification
,”
Appl. Therm. Eng.
,
63
(
1
), pp.
323
332
.
20.
Huang
,
S. M.
,
2015
, “
Heat and Mass Transfer in a Quasi-Counter Flow Parallel-Plate Membrane-Based Absorption Heat Pump (QPMAHP)
,”
J. Membr. Sci.
,
496
, pp.
39
47
.
21.
Zhang
,
L.-Z.
,
2010
, “
Heat and Mass Transfer in a Quasi-Counter Flow Membrane-Based Total Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5478
5486
.
22.
Yang
,
M.
,
Huang
,
S.-M.
, and
Yang
,
X.
,
2014
, “
Experimental Investigations of a Quasi-Counter Flow Parallel-Plate Membrane Contactor Used for air Humidification
,”
Energy and Build.
,
80
, pp.
640
644
.
23.
Huang
,
S.-M.
,
Yang
,
M.
,
Chen
,
B.
,
Jiang
,
R.
,
Qin
,
F. G. F.
, and
Yang
,
X.
,
2015
, “
Laminar Flow and Heat Transfer in a Quasi-Counter Flow Parallel-Plate Membrane Channel (QCPMC)
,”
Int. J. Heat Mass Transfer
,
86
, pp.
890
897
.
24.
Vali
,
A.
,
Simonson
,
C. J.
,
Besant
,
R. W.
, and
Mahmood
,
G.
,
2009
, “
Numerical Model and Effectiveness Correlations for a Run-Around Heat Recovery System With Combined Counter and Cross Flow Exchangers
,”
Int. J. Heat Mass Transfer
,
52
(
25–26
), pp.
5827
5840
.
25.
Zhang
,
L.-Z.
,
Huang
,
S.-M.
,
Chi
,
J.-H.
, and
Pei
,
L.-X.
,
2012
, “
Conjugate Heat and Mass Transfer in a Hollow-Fiber Membrane Module for Liquid Desiccant Air Dehumidification: A Free Surface Model Approach
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3789
3799
.
26.
Ouyang
,
Y.-W.
, and
Zhang
,
L.-Z.
,
2016
, “
Conjugate Heat and Mass Transfer in a Skewed Flow Hollow-Fiber Membrane Bank Used for Liquid Desiccant Air Dehumidification
,”
Int. J. Heat Mass Transfer
,
93
, pp.
23
40
.
27.
Huang
,
S.-M.
, and
Yang
,
M.
,
2014
, “
Heat and Mass Transfer Enhancement in a Cross-Flow Elliptical Hollow-Fiber Membrane Contactor Used for Liquid Desiccant Air Dehumidification
,”
J. Membr. Sci.
,
449
, pp.
184
192
.
28.
Zhang
,
L.-Z.
, and
Zhang
,
N.
,
2014
, “
A Heat Pump Driven and Hollow-Fiber Membrane-Based Liquid Desiccant air Dehumidification System: Modeling and Experimental Validation
,”
Energy
,
65
, pp.
441
451
.
29.
Porcheron
,
F.
, and
Drozdz
,
S.
,
2009
, “
Hollow-Fiber Membrane Contactor Transient Experiments for the Characterization of gas/Liquid Thermodynamics and Mass Transfer Properties
,”
Chem. Eng. Sci.
,
64
(
2
), pp.
265
275
.
30.
Park
,
H.
,
Deshwal
,
B.
,
Kim
,
I.
, and
Lee
,
H.
,
2008
, “
Absorption of SO2 From Flue Gas Using PVDF Hollow-Fiber Membranes in a Gas–Liquid Contactor
,”
J. Membr. Sci.
,
319
(
1–2
), pp.
29
37
.
31.
Luis
,
P.
,
Garea
,
A.
, and
Irabien
,
A.
,
2010
, “
Modelling of a Hollow Fibre Ceramic Contactor for SO2 Absorption
,”
Sep. Purif. Technol.
,
72
(
2
), pp.
174
179
.
32.
Huang
,
S.-M.
,
Zhang
,
L.-Z.
, and
Yang
,
M.
,
2013
, “
Conjugate Heat and Mass Transfer in Membrane Parallel-Plates Ducts for Liquid Desiccant Air Dehumidification: Effects of the Developing Entrances
,”
J. Membr. Sci.
,
437
, pp.
82
89
.
33.
Hemingson
,
H. B.
,
Simonson
,
C. J.
, and
Besant
,
R. W.
,
2011
, “
Steady-State Performance of a Run-Around Membrane Energy Exchanger (RAMEE) for a Range of Outdoor Air Conditions
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
1814
1824
.
34.
Ghadiri Moghaddam
,
D.
,
Oghabi
,
A.
,
Ge
,
G.
,
Besant
,
R. W.
, and
Simonson
,
C. J.
,
2013
, “
Numerical Model of a Small-Scale Liquid-to-Air Membrane Energy Exchanger: Parametric Study of Membrane Resistance and air Side Convective Heat Transfer Coefficient
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
245
258
.
35.
Kassai
,
M.
,
Ge
,
G.
, and
Simonson
,
C. J.
,
2016
, “
Dehumidification Performance Investigation of Run-Around Membrane Energy Exchanger Systems
,”
Therm. Sci.,
20
(
6
), pp.
1927
1938
.
36.
Abdel-Salam
,
M. R. H.
,
Besant
,
R. W.
, and
Simonson
,
C. J.
,
2016
, “
Design and Testing of a Novel 3-Fluid Liquid-to-Air Membrane Energy Exchanger (3-Fluid LAMEE)
,”
Int. J. Heat Mass Transfer
,
92
, pp.
312
329
.
37.
Abdel-Salam
,
M. R. H.
,
Besant
,
R. W.
, and
Simonson
,
C. J.
,
2016
, “
Performance Testing of a Novel 3-Fluid Liquid-to-Air Membrane Energy Exchanger (3-Fluid LAMEE) Under Desiccant Solution Regeneration Operating Conditions
,”
Int. J. Heat Mass Transfer
,
95
, pp.
773
786
.
38.
Huang
,
S.-M.
,
Qiu
,
D.
,
Huang
,
W.
,
Yang
,
M.
, and
Xiao
,
H.
,
2017
, “
Laminar Flow and Heat Transfer in a Quasi-Counter Flow Parallel-Plate Membrane Channel in the Solution Side With Cooling Tubes
,”
Int. J. Heat Mass Transfer
,
105
, pp.
769
780
.
39.
Zhang
,
L.-Z.
,
2010
, “
An Analytical Solution for Heat Mass Transfer in a Hollow-Fiber Membrane Based Air-to-Air Heat Mass Exchanger
,”
J. Membr. Sci.
,
360
(
1–2
), pp.
217
225
.
40.
Costello
,
M. J.
,
Fane
,
A. G.
,
Hogan
,
P. A.
, and
Schofield
,
R. W.
,
1993
, “
The Effect of Shell Side Hydrodynamics on the Performance of Axial Flow Hollow Fibre Modules
,”
J. Membr. Sci.
,
80
(
1
), pp.
1
11
.
41.
Kaita
,
Y.
,
2001
, “
Thermodynamic Properties of Lithium Bromide–Water Solutions at High Temperatures
,”
Int. J. Refrig.
,
24
(
5
), pp.
374
390
.
42.
Rasouli
,
M.
,
Akbari
,
S.
,
Simonson
,
C. J.
, and
Besant
,
R. W.
,
2014
, “
Energetic, Economic and Environmental Analysis of a Health-Care Facility HVAC System Equipped With a Run-Around Membrane Energy Exchanger
,”
Energy Build.
,
69
, pp.
112
121
.
43.
The Free Library. S.v.
, “
Application of a Run-Around Membrane Energy Exchanger in an Office Building HVAC System.—Free Online Library
,” [Online]. https://www.thefreelibrary.com/Application+of+a+run-around+membrane+energy+exchanger+in+an+office…-a0272754954. Accessed April 6, 2019.
You do not currently have access to this content.