Reduced mechanisms are needed for use with computational fluid dynamic codes (CFD) utilized in the design of combustors. Typically, reduced mechanisms are created from a detailed mechanism, which contain numerous species and reactions that are computationally difficult to handle using most CFD codes. Recently, it has been shown that the detailed aramco 2.0 mechanism well predicted the available experimental data at high pressures and in highly CO2 diluted methane mixtures. Here, a 23-species gas-phase mechanism is derived from the detailed aramco 2.0 mechanism by path-flux-analysis method (PFA) by using CHEM-RC. It is identified that the reaction CH4 + HO2 ⇔ CH3 + H2O2 is very crucial in predicting the ignition delay times (IDTs) under current conditions. Further, it is inferred that species C2H3 and CH3OH are very important in predicting IDTs of lean sCO2 methane mixtures. Also, the 23-species mechanism presented in this work is able to perform on par with the detailed aramco 2.0 mechanism in terms of simulating IDTs, perfectly stirred-reactor (PSR) estimates under various CO2 dilutions and equivalence ratios, and prediction of turbulence chemistry interactions. It is observed that the choice of equation of state has no significant impact on the IDTs of supercritical CH4/O2/CO2 mixtures but it influences supercritical H2/O2/CO2 mixtures considered in this work.

References

1.
MacPhee
,
D. W.
, and
Beyene
,
A.
,
2017
, “
Impact of Air Quality and Site Selection on Gas Turbine Engine Performance
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020903
.
2.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
050801
.
3.
Breault
,
R. W.
,
Weber
,
J.
,
Straub
,
D.
, and
Bayham
,
S.
,
2017
, “
Computational Fluid Dynamics Modeling of the Fuel Reactor in NETL's 50 kWth Chemical Looping Facility
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042211
.
4.
Dostal
,
V.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/17746
5.
Khadse
,
A.
,
Blanchette
,
L.
,
Kapat
,
J.
,
Vasu
,
S.
,
Hossain
,
J.
, and
Donazzolo
,
A.
,
2018
, “
Optimization of Supercritical CO2 Brayton Cycle for Simple Cycle Gas Turbines Exhaust Heat Recovery Using Genetic Algorithm
,”
ASME J. Energy Resour. Technol.
,
140
(7), p. 071601.
6.
Du
,
X.
,
Gu
,
M.
,
Duan
,
S.
, and
Xian
,
X.
,
2017
, “
The Influences of CO2 Injection Pressure on CO2 Dispersion and the Mechanism of CO2–CH4 Displacement in Shale
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012907
.
7.
Allam
,
R.
,
Fetvedt
,
J.
,
Forrest
,
B.
, and
Freed
,
D.
, 2014, “
The Oxy-Fuel, Supercritical CO2 Allam Cycle: New Cycle Developments to Produce Even Lower-Cost Electricity From Fossil Fuels Without Atmospheric Emissions
,”
ASME
Paper No. GT2014-26952.
8.
Manikantachari, K. R. V., Martin, S., Ladislav Vesely, Bobren-Diaz, J. O., and Vasu, S., 2018, “
A Strategy of Mixture Preparation for Methane Direct-Fired sCO2 Combustors
,” ASME Paper No. GT2018-75557 (in press).
9.
Manikantachari, K. R. V., Martin, S., Ladislav Vesely, Bobren-Diaz, J. O., and Vasu, S., 2018, “
A Strategy of Reactant Mixing in Methane Direct-Fired sCO2 Combustors
,” ASME Paper No. GT2018-75547 (in press).
10.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
, and
Gardiner
,
W. C.
, Jr.
,
1999
, “GRI 3.0 Mechanism,” Gas Research Institute.
11.
Metcalfe
,
W. K.
,
Burke
,
S. M.
,
Ahmed
,
S. S.
, and
Curran
,
H. J.
,
2013
, “
A Hierarchical and Comparative Kinetic Modeling Study of C1–C2 Hydrocarbon and Oxygenated Fuels
,”
Int. J. Chem. Kinet.
,
45
(
10
), pp.
638
675
.
12.
Li, Y., Zhou, C.-W., Somers, K. P., Zhang, K., and Curran, H. J., 2017, “
The Oxidation of 2-Butene: A High Pressure Ignition Delay, Kinetic Modeling Study and Reactivity Comparison with Isobutene and 1-Butene
,”
Proc. Combust. Inst.
,
36
(1), pp. 403–411.
13.
Gokulakrishnan
,
P.
,
Lawrence
,
A. D.
,
McLellan
,
P. J.
, and
Grandmaison
,
E. W.
,
2006
, “
A Functional-PCA Approach for Analyzing and Reducing Complex Chemical Mechanisms
,”
Comput. Chem. Eng.
,
30
(
6–7
), pp.
1093
1101
.
14.
Gokulakrishnan
,
P.
,
Kwon
,
S.
,
Hamer
,
A. J.
,
Klassen
,
M. S.
, and
Roby
,
R. J.
,
2006
, “
Reduced Kinetic Mechanism for Reactive Flow Simulation of Syngas/Methane Combustion at Gas Turbine Conditions
,”
ASME
Paper No. GT2006-90573.
15.
Barari
,
G.
,
Pryor
,
O.
,
Koroglu
,
B.
,
Lopez
,
J.
,
Nash
,
L.
,
Sarathy
,
S. M.
, and
Vasu
,
S. S.
,
2017
, “
High Temperature Shock Tube Experiments and Kinetic Modeling Study of Diisopropyl Ketone Ignition and Pyrolysis
,”
Combust. Flame
,
177
, pp.
207
218
.
16.
Masunov
,
A. E.
,
Atlanov
,
A. A.
, and
Vasu
,
S. S.
,
2016
, “
Potential Energy Surfaces for the Reactions of HO2 Radical With CH2O and HO2 in CO2 Environment
,”
J. Phys. Chem. A
,
120
(
39
), pp.
7681
7688
.
17.
Masunov
,
A. E.
,
Atlanov
,
A. A.
, and
Vasu
,
S. S.
,
2016
, “
Molecular Dynamics Study of Combustion Reactions in a Supercritical Environment—Part 1: Carbon Dioxide and Water Force Field Parameters Refitting and Critical Isotherms of Binary Mixtures
,”
Energy Fuels
,
30
(
11
), pp.
9622
9627
.
18.
Masunov
,
A. E.
,
Wait
,
E. E.
,
Atlanov
,
A. A.
, and
Vasu
,
S. S.
,
2017
, “
Quantum Chemical Study of Supercritical Carbon Dioxide Effects on Combustion Kinetics
,”
J. Phys. Chem. A
,
121
(19), pp. 3728–3735.
19.
Masunov
,
A. E.
,
Wait
,
E.
, and
Vasu
,
S. S.
,
2017
, “
Quantum Chemical Study of CH3 + O2 Combustion Reaction System: Catalytic Effects of Additional CO2 Molecule
,”
J. Phys. Chem. A
,
121
(
30
), pp.
5681
5689
.
20.
Jiankun Shao
,
R. C.
,
Davidson
,
D. F.
,
Hanson
,
R. K.
,
Barak
,
S.
, and
Vasu
,
S.
,
2018
, “
Ignition Delay Times of Methane and Hydrogen Highly Diluted in Carbon Dioxide Upto 300 Bar
,”
Proc. Combust. Inst.
(in press).
21.
Pryor
,
O.
,
Barak
,
S.
,
Koroglu
,
B.
,
Ninnemann
,
E.
, and
Vasu
,
S. S.
,
2017
, “
Measurements and Interpretation of Shock Tube Ignition Delay Times in Highly CO2 Diluted Mixtures Using Multiple Diagnostics
,”
Combust. Flame
,
180
, pp.
63
76
.
22.
Pryor
,
O.
,
Barak
,
S.
,
Lopez
,
J.
,
Ninnemann
,
E.
,
Koroglu
,
B.
,
Nash
,
L.
, and
Vasu
,
S.
,
2017
, “
High Pressure Shock Tube Ignition Delay Time Measurements During Oxy-Methane Combustion With High Levels of CO2 Dilution
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042208
.
23.
Schmitt
,
R.
,
Butler
,
P.
, and
French
,
N. B.
,
1993
, “
CHEMKIN Real Gas
,” University of Iowa, Iowa City, IA, Report, No. 93-006.
24.
Lu
,
T.
, and
Law
,
C. K.
,
2008
, “
Strategies for Mechanism Reduction for Large Hydrocarbons: N-Heptane
,”
Combust. Flame
,
154
(
1–2
), pp.
153
163
.
25.
Nicolas
,
G.
, and
Metghalchi
,
H.
,
2015
, “
Development of the Rate-Controlled Constrained-Equilibrium Method for Modeling of Ethanol Combustion
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022205
.
26.
Petersen
,
E. L.
, and
Hanson
,
R. K.
,
1999
, “
Reduced Kinetics Mechanisms for Ram Accelerator Combustion
,”
J. Propul. Power
,
15
(
4
), pp.
591
600
.
27.
Bhattacharjee
,
B.
,
Schwer
,
D. A.
,
Barton
,
P. I.
, and
Green
,
W. H.
,
2003
, “
Optimally-Reduced Kinetic Models: Reaction Elimination in Large-Scale Kinetic Mechanisms
,”
Combust. Flame
,
135
(
3
), pp.
191
208
.
28.
Tomlin
,
A. S.
,
Turányi
,
T.
, and
Pilling
,
M. J.
,
1997
, “
Mathematical Tools for the Construction, Investigation and Reduction of Combustion Mechanisms
,”
Comprehensive Chemical Kinetics
,
M. J.
Pilling
, ed.,
Elsevier
, Amsterdam, The Netherlands, pp.
293
437
.
29.
Beretta
,
G. P.
,
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2016
, “
Degree of Disequilibrium Analysis for Automatic Selection of Kinetic Constraints in the Rate-Controlled Constrained-Equilibrium Method
,”
Combust. Flame
,
168
, pp.
342
364
.
30.
Sun
,
W.
,
Chen
,
Z.
,
Gou
,
X.
, and
Ju
,
Y.
,
2010
, “
A Path Flux Analysis Method for the Reduction of Detailed Chemical Kinetic Mechanisms
,”
Combust. Flame
,
157
(
7
), pp.
1298
1307
.
31.
Martin
,
S. M.
,
2003
, “
The Conditional Moment Closure Method for Modeling Lean Premixed Turbulent Combustion
,”
Ph.D. thesis
, University of Washington, Seattle, WA.https://copac.jisc.ac.uk/id/37624295?style=html
32.
Bobren-Diaz
,
J.
,
Martin
,
S. M.
,
Hitch
,
B. D.
,
Manikantachari
,
K.
, and
Vasu
,
S.
, 2017, “
Assessment of Detailed and Reduced JetSurF 2.0 Mechanisms Using Conditional Moment Closure Method
,”
AIAA
Paper No. 2017-4854.
33.
van der
Waals
,
J. D.
,
1873
, “
On the Continuity of the Gaseous and Liquid States
,” Ph.D. thesis, Universiteit Leiden, Leiden, The Netherlands.
34.
Sengers
,
J. V.
,
Kayser
,
R.
,
Peters
,
C.
, and
White
,
H.
,
2000
,
Equations of State for Fluids and Fluid Mixtures
,
Elsevier
, Amsterdam, The Netherlands.
35.
Valderrama
,
J. O.
,
2003
, “
The State of the Cubic Equations of State
,”
Ind. Eng. Chem. Res.
,
42
(
8
), pp.
1603
1618
.
36.
De Giorgi
,
M.
,
Sciolti
,
A.
, and
Ficarella
,
A.
,
2014
, “
Application and Comparison of Different Combustion Models of High Pressure LOX/CH4 Jet Flames
,”
Energies
,
7
(
1
), pp.
477
497
.
37.
Kim
,
S.-K.
,
Choi
,
H.-S.
, and
Kim
,
Y.
,
2012
, “
Thermodynamic Modeling Based on a Generalized Cubic Equation of State for Kerosene/LOX Rocket Combustion
,”
Combust. Flame
,
159
(
3
), pp.
1351
1365
.
38.
Manikantachari
,
K. R. V.
,
Martin
,
S.
,
Bobren-Diaz
,
J. O.
, and
Vasu
,
S.
,
2017
, “
Thermal and Transport Properties for the Simulation of Direct-Fired sCO2 Combustor
,”
ASME J. Eng. Gas Turbines Power
,
139
(
12
), p.
121505
.
39.
Poschner
,
M. M.
, and
Pfitzner
,
M.
, 2010, “
CFD-Simulation of the Injection and Combustion of LOX and H2 at Supercritical Pressures
,”
AIAA
Paper No. 2010-1144.
40.
Poling
,
B. E.
,
Prausnitz
,
J. M.
, and
O'connell
,
J. P.
,
2001
,
The Properties of Gases and Liquids
,
McGraw-Hill
,
New York
.
41.
Gou
,
X.
,
Sun
,
W.
,
Chen
,
Z.
, and
Ju
,
Y.
,
2010
, “
A Dynamic Multi-Timescale Method for Combustion Modeling With Detailed and Reduced Chemical Kinetic Mechanisms
,”
Combust. Flame
,
157
(
6
), pp.
1111
1121
.
42.
Niemeyer
,
K. E.
,
Sung
,
C.-J.
, and
Raju
,
M. P.
,
2010
, “
Skeletal Mechanism Generation for Surrogate Fuels Using Directed Relation Graph With Error Propagation and Sensitivity Analysis
,”
Combust. Flame
,
157
(
9
), pp.
1760
1770
.
43.
Aguilera-Iparraguirre
,
J.
,
Curran
,
H. J.
,
Klopper
,
W.
, and
Simmie
,
J. M.
,
2008
, “
Accurate Benchmark Calculation of the Reaction Barrier Height for Hydrogen Abstraction by the Hydroperoxyl Radical From Methane. Implications for CnH2n+2 Where n = 2 → 4
,”
J. Phys. Chem. A
,
112
(
30
), pp.
7047
7054
.
44.
Lieuwen
,
T.
,
Yang
,
V.
, and
Yetter
,
R.
,
2009
,
Synthesis Gas Combustion: Fundamentals and Applications
,
CRC Press
, Boca Raton, FL.
45.
Pepiot-Desjardins
,
P.
, and
Pitsch
,
H.
,
2008
, “
An Efficient Error-Propagation-Based Reduction Method for Large Chemical Kinetic Mechanisms
,”
Combust. Flame
,
154
(
1–2
), pp.
67
81
.
46.
Lu
,
T.
, and
Law
,
C. K.
,
2005
, “
A Directed Relation Graph Method for Mechanism Reduction
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1333
1341
.
47.
Swithenbank
,
J.
,
Poll
,
I.
,
Vincent
,
M.
, and
Wright
,
D.
, 1973, “
Combustion Design Fundamentals
,”
14th International Symposium on Combustion
, University Park, PA, Aug. 20–25, pp.
627
638
.
48.
Klimenko
,
A. Y.
, and
Bilger
,
R. W.
,
1999
, “
Conditional Moment Closure for Turbulent Combustion
,”
Prog. Energy Combust. Sci.
,
25
(
6
), pp.
595
687
.
You do not currently have access to this content.