The relieving system using the choke valve is applied to control the pressure in CO2 pipeline. However, the temperature of fluid would drop rapidly because of Joule–Thomson cooling (JTC), which may cause solid CO2 form and block the pipe. A three-dimensional (3D) computational fluid dynamic (CFD) model considering the phase transition and turbulence was developed to predict the fluid-particle flow and deposition characteristics. The Lagrangian method, Reynold's stress transport model (RSM) for turbulence, and stochastic tracking model (STM) were used. The results show that the model predictions were in good agreement with the experimental data published. The effects of particle size, flow velocity, and pipeline diameter were analyzed. It was found that the increase of the flow velocity would cause the decrease of particle deposition ratio and there existed the critical particle size that causes the deposition ratio maximum. It also presents the four types of particle motions corresponding to the four deposition regions. Moreover, the sudden expansion region is the easiest to be blocked by the particles. In addition, the Stokes number had an effect on the deposition ratio and it was recommended for Stokes number to avoid 3–8 St.

References

1.
Hassan
,
B.
,
Ogidiama
,
O. V.
,
Khan
,
M. N.
, and
Shamim
,
T.
,
2017
, “
Energy and Exergy Analyses of a Power Plant With Carbon Dioxide Capture Using Multistage Chemical Looping Combustion
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032002
.
2.
Ahmed
,
S. F.
, and
Atilhan
,
M.
,
2017
, “
Evaluating the Performance of a Newly Developed Carbon Capture Device for Mobile Emission Sources
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062101
.
3.
Ziabakhsh-Ganji
,
Z.
, and
Kooi
,
H.
,
2014
, “
Sensitivity of Joule–Thomson Cooling to Impure CO2 Injection in Depleted Gas Reservoirs
,”
Appl. Energy
,
113
, pp.
434
451
.
4.
Le Van
,
S.
, and
Chon
,
B. H.
,
2018
, “
Effective Prediction and Management of a CO2 Flooding Process for Enhancing Oil Recovery Using Artificial Neural Networks
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032906
.
5.
Al-Ameri
,
W. A.
,
Abdulraheem
,
A.
, and
Mahmoud
,
M.
,
2016
, “
Long-Term Effects of CO2 Sequestration on Rock Mechanical Properties
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012201
.
6.
Shafeen
,
A.
, and
Carter
,
T.
,
2010
, “
Geological Sequestration of Greenhouse Gases
,”
Environmentally Conscious Fossil Energy Production
, Wiley, Hoboken, NJ, pp.
207
241
.
7.
Teng
,
L.
,
Zhang
,
D.
,
Li
,
Y.
,
Wang
,
W.
,
Wang
,
L.
,
Hu
,
Q.
,
Ye
,
X.
,
Bian
,
J.
, and
Teng
,
W.
,
2016
, “
Multiphase Mixture Model to Predict Temperature Drop in Highly Choked Conditions in CO2 Enhanced Oil Recovery
,”
Appl. Therm. Eng.
,
108
, pp.
670
679
.
8.
Li
,
A.
, and
Ahmadi
,
G.
,
1992
, “
Dispersion and Deposition of Spherical Particles From Point Sources in a Turbulent Channel Flow
,”
Aerosol Sci. Technol.
,
16
(
4
), pp.
209
226
.
9.
Li
,
A.
, and
Ahmadi
,
G.
,
1993
, “
Computer Simulation of Deposition of Aerosols in a Turbulent Channel Flow With Rough Walls
,”
Aerosol Sci. Technol.
,
18
(
1
), pp.
11
24
.
10.
Li
,
A.
, and
Ahmadi
,
G.
,
1993
, “
Deposition of Aerosols on Surfaces in a Turbulent Channel Flow
,”
Int. J. Eng. Sci.
,
31
(
3
), pp.
435
451
.
11.
Chen
,
Q.
, and
Ahmadi
,
G.
,
1997
, “
Deposition of Particles in a Turbulent Pipe Flow
,”
J. Aerosol Sci.
,
28
(
5
), pp.
789
796
.
12.
Doss
,
E. D.
,
1985
, “
Analysis and Application of Solid-Gas Flow Inside a Venturi With Particle Interaction
,”
Int. J. Multiphase Flow
,
11
(
4
), pp.
445
458
.
13.
Tashiro
,
H.
, and
Tomita
,
Y.
,
1984
, “
Sudden Expansion of Gas-Solid Two-Phase Flow in Vertical Downward Flow
,”
Bull. JSME
,
27
(
232
), pp.
2160
2165
.
14.
Liu
,
B. Y.
, and
Agarwal
,
J. K.
,
1974
, “
Experimental Observation of Aerosol Deposition in Turbulent Flow
,”
J. Aerosol Sci.
,
5
(
2
), pp.
145
155
.
15.
Sippola
,
M. R.
,
2002
, “
Particle Deposition in Ventilation Ducts
,” Lawrence Berkeley National Laboratory, Berkeley, CA.
16.
Zhou
,
L.
,
Zhang
,
L.
,
Shi
,
W.
,
Agarwal
,
R.
, and
Li
,
W.
,
2018
, “
Transient Computational Fluid Dynamics/Discrete Element Method Simulation of Gas–Solid Flow in a Spouted Bed and Its Validation by High-Speed Imaging Experiment
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012206
.
17.
Al-Lababidi
,
S.
,
Yan
,
W.
, and
Yeung
,
H.
,
2012
, “
Sand Transportations and Deposition Characteristics in Multiphase Flows in Pipelines
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
034501
.
18.
Zhang
,
H.
, and
Ahmadi
,
G.
,
2000
, “
Aerosol Particle Transport and Deposition in Vertical and Horizontal Turbulent Duct Flows
,”
J. Fluid Mech.
,
406
, pp.
55
80
.
19.
Huang
,
D.
,
Quack
,
H.
, and
Ding
,
G. L.
,
2007
, “
Experimental Study of Throttling of Carbon Dioxide Refrigerant to Atmospheric Pressure
,”
Appl. Therm. Eng.
,
27
(
11
), pp.
1911
1922
.
20.
Oosterkamp
,
A.
, and
Ramsen
,
J.
,
2008
, “
State of the Art Overview of CO2 Pipeline Transport With Relevance to Offshore Pipelines
,” Polytec, Haugesund, Norway, Polytec Report No.
POL-O-2007-138-A
.https://www.researchgate.net/publication/228688545_State-of-the-Art_Overview_of_CO_2_Pipeline_Transport_with_Relevance_to_Offshore_Pipelines
21.
Martynov
,
S.
,
Brown
,
S.
,
Mahgerefteh
,
H.
,
Sundara
,
V.
,
Chen
,
S.
, and
Zhang
,
Y.
,
2014
, “
Modelling Three-Phase Releases of Carbon Dioxide From High-Pressure Pipelines
,”
Process Saf. Environ. Prot.
,
92
(
1
), pp.
36
46
.
22.
Munkejord
,
S. T.
,
Hammer
,
M.
, and
Løvseth
,
S. W.
,
2016
, “
CO2 Transport: Data and Models–A Review
,”
Appl. Energy
,
169
, pp.
499
523
.
23.
Hammer
,
M.
,
Ervik
,
Å.
, and
Munkejord
,
S. T.
,
2013
, “
Method Using a Density–Energy State Function With a Reference Equation of State for Fluid-Dynamics Simulation of Vapor–Liquid–Solid Carbon Dioxide
,”
Ind. Eng. Chem. Res.
,
52
(
29
), pp.
9965
9978
.
24.
Zheng
,
W.
,
Mahgerefteh
,
H.
,
Martynov
,
S.
, and
Brown
,
S.
,
2017
, “
Modeling of CO2 Decompression Across the Triple Point
,”
Ind. Eng. Chem. Res.
,
56
(
37
), pp.
10491
10499
.
25.
Martynov
,
S.
,
Zheng
,
W.
,
Brown
,
S.
, and
Mahgerefteh
,
H.
, 2016, “
Numerical Simulation of CO2 Flows in Pipes With Phase Transition Across the Triple Point
,”
12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics
, Malaga, Spain, July 11–13, pp. 1080--1085https://www.researchgate.net/publication/306915280_Numerical_Simulation_of_CO2_Flows_in_Pipes_with_Phase_Transition_across_the_Triple_Point.
26.
Kim
,
B. K.
,
Ng
,
D.
,
Mentzer
,
R. A.
, and
Mannan
,
M. S.
,
2012
, “
Modeling of Water-Spray Application in the Forced Dispersion of LNG Vapor Cloud Using a Combined Eulerian–Lagrangian Approach
,”
Ind. Eng. Chem. Res.
,
51
(
42
), pp.
13803
13814
.
27.
ANSYS
,
2012
, “
ANSYS Fluent Theory Guide
,” ANSYS, Inc., Canonsburg, PA.
28.
Witlox
,
H. W.
,
Harper
,
M.
, and
Oke
,
A.
,
2009
, “
Modelling of Discharge and Atmospheric Dispersion for Carbon Dioxide Releases
,”
J. Loss Prev. Process Ind.
,
22
(
6
), pp.
795
802
.
29.
Wareing
,
C. J.
,
Woolley
,
R. M.
,
Fairweather
,
M.
, and
Falle
,
S. A.
,
2013
, “
A Composite Equation of State for the Modeling of Sonic Carbon Dioxide Jets in Carbon Capture and Storage Scenarios
,”
AIChE J.
,
59
(
10
), pp.
3928
3942
.
30.
AIChE, 2017, “
DIPPR® 801 Database
,” American Institute of Chemical Engineers, New York, accessed Feb. 23, 2018, http://www.aiche.org/dippr
31.
Teng
,
L.
,
Li
,
Y.
,
Zhao
,
Q.
,
Wang
,
W.
,
Hu
,
Q.
,
Ye
,
X.
, and
Zhang
,
D.
,
2016
, “
Decompression Characteristics of CO2 Pipelines Following Rupture
,”
J. Nat. Gas Sci. Eng.
,
36
(Part A), pp.
213
223
.
32.
Peng
,
D.-Y.
, and
Robinson
,
D. B.
,
1976
, “
A New Two-Constant Equation of State
,”
Ind. Eng. Chem. Fundam.
,
15
(
1
), pp.
59
64
.
33.
Zhang
,
X.-R.
, and
Yamaguchi
,
H.
,
2011
, “
An Experimental Study on Heat Transfer of CO2 Solid–Gas Two Phase Flow With Dry Ice Sublimation
,”
Int. J. Therm. Sci.
,
50
(
11
), pp.
2228
2234
.
34.
Launder
,
B.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
.
35.
Tian
,
L.
, and
Ahmadi
,
G.
,
2007
, “
Particle Deposition in Turbulent Duct Flows-Comparisons of Different Model Predictions
,”
J. Aerosol Sci.
,
38
(
4
), pp.
377
397
.
36.
Wang
,
B.
, and
Yu
,
A.
,
2006
, “
Numerical Study of Particle-Fluid Flow in Hydrocyclones With Different Body Dimensions
,”
Miner. Eng.
,
19
(
10
), pp.
1022
1033
.
37.
Huang
,
D.
,
2007
, “
Experimental Investigation and Theoretical Analysis of Blockage in CO2 Safety Valves and Their Downstream Pipes
,”
Ph.D. thesis
, Shanghai Jiaotong University, Shanghai, China.https://www.dissertationtopic.net/doc/1621719
38.
Yu
,
H.
,
1986
, “
Investigation of Spray Patterns of Selected Sprinklers With the FMRC Drop Size Measuring System
,”
Fire Saf. Sci.
,
1
, pp.
1165
1176
.
39.
Huang
,
D.
,
Ding
,
G.
, and
Quack
,
H.
,
2007
, “
Theoretical Analysis of Deposition and Melting Process During Throttling High Pressure CO2 Into Atmosphere
,”
Appl. Therm. Eng.
,
27
(
8
), pp.
1295
1302
.
40.
Yamaguchi
,
H.
,
Niu
,
X.-D.
,
Sekimoto
,
K.
, and
Nekså
,
P.
,
2011
, “
Investigation of Dry Ice Blockage in an Ultra-Low Temperature Cascade Refrigeration System Using CO2 as a Working Fluid
,”
Int. J. Refrig.
,
34
(
2
), pp.
466
475
.
41.
Brennen
,
C. E.
,
2005
,
Fundamentals of Multiphase Flow
,
Cambridge University Press
,
Cambridge, UK
.
42.
Ahmadi
,
G.
, and
Chen
,
Q.
,
1998
, “
Dispersion and Deposition of Particles in a Turbulent Pipe Flow With Sudden Expansion
,”
J. Aerosol Sci.
,
29
(
9
), pp.
1097
1116
.
You do not currently have access to this content.