Due to current and future exhaust emissions regulations, oxidation catalysts are increasingly being added to the exhaust streams of large-bore, two-stroke, natural gas engines. Such catalysts have a limited operational lifetime, primarily due to chemical (i.e., catalyst poisoning) and mechanical fouling resulting from the carry-over of lubrication oil from the cylinders. It is critical for users and catalyst developers to understand the nature and rate of catalyst deactivation under these circumstances. This study examines the degradation of an exhaust oxidation catalyst on a large-bore, two-stroke, lean-burn, natural gas field engine over the course of 2 years. Specifically, this work examines the process by which the catalyst was aged and tested and presents a timeline of catalyst degradation under commercially relevant circumstances. The catalyst was aged in the field for 2-month intervals in the exhaust slipstream of a GMVH-12 engine and intermittently brought back to Colorado State University for both engine testing and catalyst surface analysis. Engine testing consisted of measuring catalyst reduction efficiency as a function of temperature as well as the determination of the light-off temperature for several exhaust components. The catalyst surface was analyzed via scanning electron microscope (SEM)/energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) techniques to examine the location and rate of poison deposition. After 2 years online, the catalyst light-off temperature had increased ∼55 °F (31 °C) and ∼34 wt % poisons (S, P, Zn) were built up on the catalyst surface, both of which represent significant catalyst deactivation.

References

1.
Olsen
,
D. B.
,
Hutcherson
,
G. C.
,
Willson
,
B. D.
, and
Mitchell
,
C. E.
,
2002
, “
Development of the Tracer Gas Method for Large Bore Natural Gas Engines—Part II: Measurement of Scavenging Parameters
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
686
694
.
2.
Olsen
,
D. B.
,
Neuner
,
B.
,
Badrinarayanan
,
K.
, and Arney, G.,
2013
, “
Performance Characteristics of Oxidation Catalysts for Lean-Burn Natural Gas Engines
,”
Gas Machinery Conference
, Albuquerque, NM, Oct. 6–9, pp. 1–9.
3.
Olsen
,
D. B.
,
Luedeman
,
M. R.
,
Lanham
,
C. D.
, and Gilbert, K.,
2014
, “
Development and Testing of a Timed Power Cylinder Lube Oil Injection System
,”
Gas Machinery Conference
, Nashville, TN, Oct. 5–8, pp. 1–11.
4.
Olsen
,
D. B.
,
Arney
,
G.
, Reining, A., and Matthey, J.,
2011
, “
Oxidation Catalyst Performance Considerations: Catalyst Temperature, Space Velocity, and Fouling
,”
Gas Machinery Conference
, Nashville, TN, pp. 1–12.
5.
Bartholomew
,
C. H.
,
2001
, “
Mechanisms of Catalyst Deactivation
,”
Appl. Catal. A
,
212
(
1–2
), pp.
17
60
.
6.
Defoort
,
M.
,
Olsen
,
D.
, and
Wilson
,
B.
,
2002
, “
Performance Evaluation of Oxidation Catalysts for Natural Gas Reciprocating Engines
,”
Gas Machinery Conference
, Nashville, TN.
7.
Chen
,
J.
,
Heck
,
R. M.
, and
Farrauto
,
R. J.
,
1992
, “
Deactivation Regeneration and Poison—Resistant Catalysts: Commercial Experience in Stationary Pollution Abatement
,”
Catal. Today
,
11
(
4
), pp.
517
545
.
8.
Mowery
,
D. L.
,
Graboski
,
M. S.
,
Ohno
,
T. R.
, and
McCormick
,
R. L.
,
1999
, “
Deactivation of PdO-Al2O3 Oxidation Catalyst in Lean-Burn Natural Gas Engine Exhaust: Aged Catalyst Characterization and Studies of Poisoning by H2O and SO2
,”
Appl. Catal. B: Environ.
,
21
(
3
), pp.
157
169
.
9.
Auvray
,
X. P.
, and
Olsson
,
L.
,
2013
, “
Sulfur Dioxide Exposure: A Way to Improve the Oxidation Catalyst Performance
,”
Ind. Eng. Chem. Res.
,
52
(
41
), pp.
14556
14566
.
10.
Bunting
,
B. G.
,
More
,
K.
,
Lewis
,
S.
, and
Toops
,
T.
,
2005
, “
Phosphorous Poisoning and Phosphorous Exhaust Chemistry with Diesel Oxidation Catalysts
,”
SAE
Paper No. 2005–01-1758
.
11.
Eaton
,
S. J.
,
Nguyen
,
K.
, and
Bunting
,
B. G.
,
2006
, “
Deactivation of Diesel Oxidation Catalysts by Oil-Derived Phosphorus
,”
SAE
Paper No. 2006-01-3422
.
12.
Kahandawala
,
M. S. P.
,
Graham
,
J. L.
, and
Sidhu
,
S. S.
,
2004
, “
Impact of Lubricating Oil on Particulates Formed During Combustion of Diesel Fuel—A Shock Tube Study
,”
Fuel
,
83
(
13
), pp.
1829
1835
.
13.
Miller
,
A. L.
,
Stipe
,
C. B.
,
Habjan
,
M. C.
, and
Ahlstrand
,
G. G.
,
2007
, “
Role of Lubrication Oil in Particulate Emissions From a Hydrogen-Powered Internal Combustion Engine
,”
Environ. Sci. Technol.
,
41
(
19
), pp.
6828
6835
.
14.
Shinjoh
,
H.
,
2006
, “
Rare Earth Metals for Automotive Exhaust Catalysts
,”
J. Alloys Compd.
,
408–412
, pp.
1061
1064
.
15.
Kalantar Neyestanaki
,
A.
,
Klingstedt
,
F.
,
Salmi
,
T.
, and
Murzin
,
D. Y.
,
2004
, “
Deactivation of Postcombustion Catalysts, A Review
,”
Fuel
,
83
(
4–5
), pp.
395
408
.
16.
Cimino
,
S.
, and
Lisi
,
L.
,
2012
, “
Impact of Sulfur Poisoning on the Catalytic Partial Oxidation of Methane on Rhodium-Based Catalysts
,”
Ind. Eng. Chem. Res.
,
51
(
22
), pp.
7459
7466
.
17.
Oudet
,
F.
,
Vejux
,
A.
, and
Courtine
,
P.
,
1989
, “
Evolution During Thermal Treatment of Pure and Lanthanum-Doped Pt/Al2O3 and Pt&z.sbnd;Rh/Al2O3automotive Exhaust Catalysts: Transmission Electron Microscopy Studies on Model Samples
,”
Appl. Catal.
,
50
(
1
), pp.
79
86
.
18.
Del Angel
,
G.
,
Torres
,
G.
,
Bertin
,
V.
,
Gómez
,
R.
,
Morán-Pineda
,
M.
,
Castillo
,
S.
, and Fierro, J. L. G.,
2006
, “
The Role of Lanthanum Oxide in the Formation of NO2 Over Pt-Pb/Al2O3-La2O3 Catalysts Under Lean-Burn Conditions
,”
Catal. Commun.
,
7
(
4
), pp.
232
235
.
19.
Bitsch-Larsen
,
A.
,
Degenstein
,
N. J.
, and
Schmidt
,
L. D.
,
2008
, “
Effect of Sulfur in Catalytic Partial Oxidation of Methane Over Rh-Ce Coated Foam Monoliths
,”
Appl. Catal. B
,
78
(
3–4
), pp.
364
370
.
20.
Leprince
,
T.
,
Aleixo
,
J.
,
Williams
,
S.
, and
Naseri
,
M.
,
2004
, “
Regeneration of Palladium Based Catalyst for Methane Abatement
,”
International Council on Combustion Engines
, Kyoto, Japan, Paper No.
210
.
21.
Corro
,
G.
,
Cano
,
C.
, and
Fierro
,
J. L. G.
,
2010
, “
A Study of Pt-Pd/y-Al2O3 Catalysts for Methane Oxidation Resistant to Deactivation by Sulfur Poisoning
,”
J. Mol. Catal. A: Chem.
,
315
(
1
), pp.
35
42
.
22.
Lampert
,
J.
,
Kazi
,
M.
, and
Farrauto
,
R.
,
1997
, “
Palladium Catalyst Performance for Methane Emissions Abatement From Lean Burn Natural Gas Vehicles
,”
Appl. Catal. B
,
14
(
3–4
), pp.
211
223
.
23.
Honkanen
,
M.
,
Kärkkäinen
,
M.
,
Viitanen
,
V.
,
Jiang
,
H.
,
Kallinen
,
K.
,
Huuhtanen
,
M.
, Vippola, M., Lahtinen, J., Keiski, R., and Lepistö, T.,
2013
, “
Structural Characteristics of Natural-Gas-Vehicle-Aged Oxidation Catalyst
,”
Top. Catal.
,
56
(
9–10
), pp.
576
585
.
24.
Badrinarayanan
,
K.
,
2012
, “Performance Evaluation of Multiple Oxidation Catalysts on a Lean Burn Natural Gas Engine,”
M.S. thesis
, Colorado State University, Fort Collins, CO.
25.
Hu
,
L.
, and
Williams
,
S.
,
2007
, “
Sulfur Poisoning and Regeneration of Pd Catalyst Under Simulated Emission Conditions of Natural Gas Engine
,”
SAE
Paper No. 2007-01-4037
.
26.
Arosio
,
F.
,
Colussi
,
S.
,
Groppi
,
G.
, and
Trovarelli
,
A.
,
2006
, “
Regeneration of S-Poisoned Pd/Al2O3 Catalysts for the Combustion of Methane
,”
Catal. Today
,
117
(
4
), pp.
569
576
.
27.
Eaton
,
S. J.
,
Bunting
,
B. G.
, and
Toops
,
T. J.
,
2009
, “
The Roles of Phosphorus and Soot on the Deactivation of Diesel Oxidation Catalysts
,”
SAE
Paper No. 2009-01-0628
.
28.
Kakaee
,
A.-H.
,
Paykani
,
A.
, and
Ghajar
,
M.
,
2014
, “
The Influence of Fuel Composition on the Combustion and Emission Characteristics of Natural Gas Fueled Engines
,”
Renewable Sustainable Energy Rev.
,
38
, pp.
64
78
.
29.
Olsen
,
D. B.
,
Kohls
,
M.
, and
Arney
,
G.
,
2010
, “
Impact of Oxidation Catalysts on Exhaust NO2/NOx Ratio From Lean-Burn Natural Gas Engines
,”
J. Air Waste Manage. Assoc.
,
60
(
7
), pp.
867
874
.
30.
Thormählen
,
P.
,
Skoglundh
,
M.
,
Fridell
,
E.
, and
Andersson
,
B.
,
1999
, “
Low-Temperature CO Oxidation Over Platinum and Cobalt Oxide Catalysts
,”
J. Catal.
,
188
(
2
), pp.
300
310
.
31.
Bennett
,
M. R.
,
2007
, “Emissions From a Diesel Engine Operating With Soy-Based Biodiesel Fuel,” M.S. thesis, Colorado State University, Fort Collins, CO.
32.
Bennett
,
M.
,
Volckens
,
J.
,
Stanglmaier
,
R.
,
McNichol
,
A. P.
,
Ellenson
,
W. D.
, and
Lewis
,
C. W.
,
2008
, “
Biodiesel Effects on Particulate Radiocarbon (14C) Emissions From a Diesel Engine
,”
J. Aerosol Sci.
,
39
(
8
), pp.
667
678
.
33.
Baumgardner
,
M. E.
,
Vaughn
,
T. L.
,
Lakshminarayanan
,
A.
,
Olsen
,
D. B.
,
Ratcliff
,
M. A.
,
McCormick
,
R. L.
, and
Marchese
,
A. J.
,
2015
, “
Combustion of Ligno-Cellulosic Biomass Based Oxygenated Components in a Compression Ignition Engine
,”
Energy Fuels
,
29
(
11
), pp.
7317
7326
.
34.
U.S. National Archives and Records Administration
,
2015
, “U.S. Code of Federal Regulations. Title 40: Protection of Environment Part 60-Standards of Performance for New Stationary Sources,” U.S. National Archives and Records Administration, College Park, MD, Report No. 40CFR1.C.60.
35.
Fisher Scientific
,
2015
, “Whatman™ Air Monitoring Filters No. 7592-104,” Fisher Scientific, Hampton, NH, https://www.fishersci.com/shop/products/whatman-pm-2-5-air-monitoring-filters/057175#?keyword=7592104
36.
Muktibodh
,
A. S.
,
2011
, “Effect of Fuel Additives on Performance and Emissions From Industrial Diesel Engines,” Colorado State University, M.S. thesis, Fort Collins, CO.
37.
Honkanen
,
M.
,
Karkkainen
,
M.
,
Kolli
,
T.
,
Heikkinen
,
O.
,
Viitanen
,
V.
,
Zeng
,
L.
, Kallinen, K., Huuhtanen, M., Keiski, R., Lahtinen, J., Olsson, E., and Vippola, M.,
2016
, “
Accelerated Deactivation Studies of the Natural-Gas Oxidation Catalyst-Verifying the Role of Sulfur and Elevated Temperature in Catalyst Aging
,”
Appl. Catal. B
,
182
, pp.
439
448
.
38.
Krocher
,
O.
,
Widmer
,
M.
,
Elsener
,
M.
,
Rothe
,
D.
, and
Ag
,
M. A. N. N.
,
2009
, “
Adsorption and Desorption of SOx on Diesel Oxidation Catalysts
,”
Ind. Eng. Chem. Res.
,
48
(
22
), pp.
9847
9857
.
39.
Winkler
,
A.
,
Ferri
,
D.
, and
Aguirre
,
M.
,
2009
, “
The Influence of Chemical and Thermal Aging on the Catalytic Activity of a Monolithic Diesel Oxidation Catalyst
,”
Appl. Catal. B
,
93
(
1–2
), pp.
177
184
.
40.
Cho
,
H. M.
, and
He
,
B. Q.
,
2007
, “
Spark Ignition Natural Gas Engines—A Review
,”
Energy Convers. Manage.
,
48
(
2
), pp.
608
618
.
41.
Nithyanandan
,
K.
,
Zhang
,
J.
,
Li
,
Y.
,
Meng
,
X.
,
Donahue
,
R.
,
Lee
,
C.
, and
Dou
,
H.
,
2016
, “
Diesel-like Efficiency Using Compressed Natural Gas/Diesel Dual-Fuel Combustion
,”
ASME J. Energy Resour. Technol
,
138
(
5
), p.
052201
.
42.
Mitchell
,
R. H.
, and
Olsen
,
D. B.
, “
Extending Substitution Limits of a Diesel-Natural Gas Dual Fuel Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052202
.
43.
Baumgardner
,
M. E.
,
Davis
,
K.
, and
Olsen
,
D. B.
,
2015
, “Field Evaluation of Oxidation Catalyst Degradation on a 2-Stroke Lean Burn NG Engine,” Pipeline Research Council International, Chantilly, VA, Catalog No.
PR-179-13205-R01
.
44.
U.S. National Archives and Records Administration
, 2015, “
U.S. Code of Federal Regulations. Title 40: Protection of Environment Part 63-National Emission Standards for Hazardous Air Pollutants for Source Categories
,” College Park, MD, Report No. 40CFR1.C.63.6600.
You do not currently have access to this content.