In this paper, the effects of hydrothermal modification on sulfur-containing pollutants, such as sulfur dioxide (SO2) and carbonyl sulfide (COS), during coal pyrolysis and combustion, have been investigated. Three typical Chinese low-quality coals, Zhundong, Yimin, and Zhaotong coal (ZT), have been treated by hydrothermal modification at final modification temperatures of 200 °C, 250 °C, and 300 °C. Coal pyrolysis and combustion experiments using raw coal and modified coals were performed using a tube furnace. Results showed that SO2 and COS emission were suppressed after hydrothermal modification in the pyrolysis process. Lower emission of both SO2 and COS were also achieved when final hydrothermal modification was increased, this was attributed to the loss of aliphatic sulfur, e.g., sulfoxide, sulfone, and thiother, during the modification process. For ZT, hydrothermal modification also caused a delay in the release of sulfur-containing gases. In combustion experiments, hydrothermal modification reduced the SO2 emission for Yimin coal, but for ZT, the SO2 release amount almost doubled, and for Zhundong coal (ZD), it also increased, after hydrothermal modification. Hydrothermal modification also caused a delay in peak SO2 emission during the combustion of ZT; this is attributed to conversion of sulfur containing structures to stable aromatic compounds through hydrothermal modification.

References

1.
BP
,
2016
, “BP Statistical Review of World Energy,” British Petroleum, London, accessed Feb. 19, 2018, http://www.bp.com/statisticalreview#BPstats
2.
Graff
,
R. A.
, and
Brandes
,
S. D.
,
1987
, “
Modification of Coal by Subcritical Steam: Pyrolysis and Extraction Yields
,”
Energy Fuels
,
1
(
1
), pp.
84
88
.
3.
Prawisudha
,
P.
,
Namioka
,
T.
, and
Yoshikawa
,
K.
,
2012
, “
Coal Alternative Fuel Production From Municipal Solid Wastes Employing Hydrothermal Treatment
,”
Appl. Energy
,
90
(
1
), pp.
298
304
.
4.
Yu
,
Y.
,
Liu
,
J.
,
Wang
,
R.
,
Zhou
,
J.
, and
Cen
,
K.
,
2012
, “
Effect of Hydrothermal Dewatering on the Slurryability of Brown Coals
,”
Energy Convers. Manage.
,
57
, pp.
8
12
.
5.
Wang
,
Z.
,
Shui
,
H.
,
Pei
,
Z.
, and
Gao
,
J.
,
2008
, “
Study on the Hydrothermal Treatment of Shenhua Coal
,”
Fuel
,
87
(
4–5
), pp.
527
533
.
6.
Chiaramonti
,
D.
,
Prussi
,
M.
,
Buffi
,
M.
,
Rizzo
,
A. M.
, and
Pari
,
L.
,
2017
, “
Review and Experimental Study on Pyrolysis and Hydrothermal Liquefaction of Microalgae for Biofuel Production
,”
Appl. Energy
,
185
, pp.
963
972
.
7.
Wang
,
Z.
,
Li
,
Q.
,
Lin
,
Z.
,
Whiddon
,
R.
,
Qiu
,
K.
,
Kuang
,
M.
, and
Cen
,
K.
,
2016
, “
Transformation of Nitrogen and Sulphur Impurities During Hydrothermal Upgrading of Low Quality Coals
,”
Fuel
,
164
, pp.
254
261
.
8.
Wu
,
J.
,
Wang
,
J.
,
Liu
,
J.
,
Yang
,
Y.
,
Cheng
,
J.
,
Wang
,
Z.
,
Zhou
,
J.
, and
Cen
,
K.
,
2017
, “
Moisture Removal Mechanism of Low-Rank Coal by Hydrothermal Dewatering: Physicochemical Property Analysis and DFT Calculation
,”
Fuel
,
187
, pp.
242
249
.
9.
Zhang
,
D.
,
Liu
,
P.
,
Lu
,
X.
,
Wang
,
L.
, and
Pan
,
T.
,
2016
, “
Upgrading of Low Rank Coal by Hydrothermal Treatment: Coal Tar Yield During Pyrolysis
,”
Fuel Process. Technol.
,
141
, pp.
117
122
.
10.
Nonaka
,
M.
,
Hirajima
,
T.
, and
Sasaki
,
K.
,
2011
, “
Upgrading of Low Rank Coal and Woody Biomass Mixture by Hydrothermal Treatment
,”
Fuel
,
90
(
8
), pp.
2578
2584
.
11.
Lalvani
,
S. B.
, and
Ramaswami
,
K.
,
1988
, “
Mediator-Assisted Electrochemical Desulfurization of Coal
,”
ASME J. Energy Resour. Technol.
,
110
(
4
), pp.
269
275
.
12.
Kopparthi
,
V.
, and
Gollahalli
,
S. R.
,
1995
, “
Nitric Oxide Emission From Pulverized Coal Blend Flames
,”
ASME J. Energy Resour. Technol.
,
117
(
3
), pp.
228
233
.
13.
Wartha
,
C.
,
Winter
,
F.
, and
Hofbauer
,
H.
,
2000
, “
The Trade-Off Between N2, NO, and N2O Under Fluidized Bed Combustor Conditions
,”
ASME J. Energy Resour. Technol.
,
122
(
2
), pp.
94
100
.
14.
Shao
,
D.
,
Hutchinson
,
E. J.
,
Heidbrink
,
J.
,
Pan
,
W.
, and
Chou
,
C.
,
1994
, “
Behavior of Sulfur During Coal Pyrolysis
,”
J. Anal. Appl. Pyrolysis
,
30
(
1
), pp.
91
100
.
15.
Wladyslaw
,
M.
,
2017
, “
Co-Combustion of Pulverized Coal and Biomass in Fluidized Bed of Furnace
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062204
.
16.
Yuniati
,
M. D.
,
Kitagawa
,
K.
,
Hirajima
,
T.
,
Miki
,
H.
,
Okibe
,
N.
, and
Sasaki
,
K.
,
2015
, “
Suppression of Pyrite Oxidation in Acid Mine Drainage by Carrier Microencapsulation Using Liquid Product of Hydrothermal Treatment of Low-Rank Coal, and Electrochemical Behavior of Resultant Encapsulating Coatings
,”
Hydrometallurgy
,
158
, pp.
83
93
.
17.
Rokni
,
E.
,
Panahi
,
A.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2016
, “
Reduction of Sulfur Dioxide Emissions by Burning Coal Blends
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032204
.
18.
Rokni
,
E.
,
Hsein Chi
,
H.
, and
Levendis
,
Y. A.
,
2017
, “
In-Furnace Sulfur Capture by Cofiring Coal With Alkali-Based Sorbents
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042204
.
19.
Doctor
,
R.
, and
Wilzbach
,
K.
,
1989
, “
Cost-Effective Sulfur Control Strategies for the Great Plains Gasification Project
,”
ASME J. Energy Resour. Technol.
,
111
(
3
), pp.
160
166
.
20.
Li
,
Q.
,
Wang
,
Z.
,
Lin
,
Z.
,
He
,
Y.
,
Zhang
,
K.
,
Whiddon
,
R.
, and
Cen
,
K.
,
2016
, “
Influences of Hydrothermal Modification on Nitrogen Thermal Conversion of Low-Rank Coals
,”
Energy Fuels
,
30
(
10
), pp.
8125
8133
.
21.
Bassilakis
,
R.
,
Zhao
,
Y.
,
Solomon
,
P. R.
, and
Serio
,
M. A.
,
1993
, “
Sulfur and Nitrogen Evolution in the Argonne Coals. Experiment and Modeling
,”
Energy Fuels
,
7
(
6
), pp.
710
720
.
22.
Calkings
,
W. H.
,
1987
, “
Investigation of Organic Sulfur-Containing Structures in Coal by Flash Pyrolysis Experiments
,”
Energy Fuels
,
1
(1), pp.
59
64
.
23.
Tian
,
L.
,
Yang
,
W.
,
Chen
,
Z.
,
Wang
,
X.
,
Yang
,
H.
, and
Chen
,
H.
,
2016
, “
Sulfur Behavior During Coal Combustion in Oxy-Fuel Circulating Fluidized Bed Condition by Using TG-FTIR
,”
J. Energy Inst.
,
89
(
2
), pp.
264
270
.
24.
Al-Ayed
,
O. S.
, and
Matouq
,
M. D.
,
2009
, “
Factors Affecting Sulfur Reactions in High Sulfur Oil Shale Pyrolysis
,”
ASME J. Energy Resour. Technol.
,
131
(
1
), p.
012501
.
25.
Gryglewicz
,
G.
,
1995
, “
Sulfur Transformations During Pyrolysis of a High Sulfur Polish Coking Coal
,”
Fuel
,
74
(
3
), pp.
356
361
.
26.
Attar
,
A.
,
1978
, “
Chemistry, Thermodynamics and Kinetics of Reactions of Sulphur in Coal-Gas Reactions
,”
Fuel
,
57
(
4
), pp.
201
212
.
27.
Duan
,
L.
,
Zhao
,
C.
,
Zhou
,
W.
,
Liang
,
C.
, and
Chen
,
X.
,
2009
, “
Sulfur Evolution From Coal Combustion in O2/CO2 Mixture
,”
J. Anal. Appl. Pyrolysis
,
86
(
2
), pp.
269
273
.
28.
Fleig
,
D.
,
Andersson
,
K.
,
Johnsson
,
F.
, and
Leckner
,
B.
,
2011
, “
Conversion of Sulfur During Pulverized Oxy-Coal Combustion
,”
Energy Fuels
,
25
(
2
), pp.
647
655
.
29.
Fleig
,
D.
,
Andersson
,
K.
,
Normann
,
F.
, and
Johnsson
,
F.
,
2011
, “
SO3 Formation Under Oxyfuel Combustion Conditions
,”
Ind. Eng. Chem. Res.
,
50
(
14
), pp.
8505
8514
.
30.
Miura
,
K.
,
Mae
,
K.
,
Shimada
,
M.
, and
Minami
,
H.
,
2001
, “
Analysis of Formation Rates of Sulfur-Containing Gases During the Pyrolysis of Various Coals
,”
Energy Fuels
,
15
(
3
), pp.
629
636
.
31.
Yan
,
J.
,
Xu
,
L.
, and
Yang
,
J.
,
2008
, “
A Study on the Thermal Decomposition of Coal-Derived Pyrite
,”
J. Anal. Appl. Pyrolysis
,
82
(
2
), pp.
229
234
.
32.
Ge
,
L.
,
Zhang
,
Y.
,
Xu
,
C.
,
Wang
,
Z.
,
Zhou
,
J.
, and
Cen
,
K.
,
2015
, “
Influence of the Hydrothermal Dewatering on the Combustion Characteristics of Chinese Low-Rank Coals
,”
Appl. Therm. Eng.
,
90
, pp.
174
181
.
You do not currently have access to this content.